Today, give a try to Techtonique web app, a tool designed to help you make informed, data-driven decisions using Mathematics, Statistics, Machine Learning, and Data Visualization. Here is a tutorial with audio, video, code, and slides: https://moudiki2.gumroad.com/l/nrhgb. 100 API requests are now (and forever) offered to every user every month, no matter the pricing tier.
In Generating Synthetic Data with R-vine Copulas using esgtoolkit in R, I presented a method to generate synthetic stock returns data using R-vine copulas with the esgtoolkit
package in R.
This post demonstrates how to use the DistroSimulator
class from Techtonique’s synthe
package to generate synthetic data. The examples cover univariate normal distributions, multivariate distributions, stock returns, digits dataset, Fashion-MNIST, and Olivetti faces.
The results showcase the effectiveness of the DistroSimulator
in capturing the underlying distribution of the data through diverse metrics and visualizations.
But first, please sign the petition “Stop torturing T. Moudiki”: https://www.change.org/stop_torturing_T_Moudiki
!pip install git+https://github.com/Techtonique/synthe.git
import numpy as np
import matplotlib.pyplot as plt
import optuna
from scipy import stats
from sklearn.datasets import fetch_olivetti_faces, load_digits
from tensorflow.keras.datasets import fashion_mnist
from sklearn.decomposition import PCA
from sklearn.kernel_ridge import KernelRidge
from tqdm import tqdm
from synthe import DistroSimulator # Assuming your package name is synthe
# Now let's reproduce the exact same examples using DistroSimulator
print("=" * 60)
print("EXAMPLE 1: Univariate Normal Distribution")
print("=" * 60)
# Example 1: Univariate normal
# Example usage (univariate)
np.random.seed(42)
n = 200
Y_uni = np.random.normal(0, 1, n)
# Create and fit the simulator
simulator_uni = DistroSimulator(
random_state=42,
residual_sampling="bootstrap",
use_rff=False # Small dataset, no need for approximation
)
simulator_uni.fit(Y_uni, metric='wasserstein', n_trials=50)
Y_sim_uni = simulator_uni.sample(500)
print("Univariate Results:")
print(f"Best sigma: {simulator_uni.best_params_['sigma']:.3f}, "
f"lambda: {simulator_uni.best_params_['lambd']:.3f}, "
f"dist: {simulator_uni.best_score_:.3f}")
# Compare distributions
simulator_uni.compare_distributions(Y_uni, Y_sim_uni)
print("\n" + "=" * 60)
print("EXAMPLE 2: Bivariate Normal Distribution")
print("=" * 60)
# Example 2: Bivariate normal
mean = [0, 0]
cov = [[1, 0.5], [0.5, 1]]
Y_multi = np.random.multivariate_normal(mean, cov, n)
simulator_multi = DistroSimulator(
random_state=42,
residual_sampling="bootstrap",
use_rff=False
)
simulator_multi.fit(Y_multi, metric='mmd', n_trials=50)
Y_sim_multi = simulator_multi.sample(500)
print("Bivariate Results:")
print(f"Best sigma: {simulator_multi.best_params_['sigma']:.3f}, "
f"lambda: {simulator_multi.best_params_['lambd']:.3f}, "
f"MMD: {simulator_multi.best_score_:.3f}")
# Compare distributions
simulator_multi.compare_distributions(Y_multi, Y_sim_multi)
print("\n" + "=" * 60)
print("EXAMPLE 3: 3D Multivariate Mixture")
print("=" * 60)
# Example 3: 3D multivariate mixture
# Example usage (3D multivariate mixture)
np.random.seed(42)
n_samples = 800
# Generate multivariate target distribution
cov_matrix1 = np.array([[1.0, 0.5, 0.3],
[0.5, 1.5, 0.4],
[0.3, 0.4, 0.8]])
component1 = np.random.multivariate_normal([0, 1, -0.5], cov_matrix1, int(0.6 * n_samples))
cov_matrix2 = np.array([[0.8, -0.3, 0.1],
[-0.3, 1.2, -0.2],
[0.1, -0.2, 1.0]])
component2 = np.random.multivariate_normal([2, -1, 1], cov_matrix2, int(0.4 * n_samples))
Y_mixture = np.vstack([component1, component2])
np.random.shuffle(Y_mixture)
print("Target Distribution: 3D mixture of multivariate normals")
print(f"Sample size: {len(Y_mixture)}")
print("Original correlation matrix:")
print(np.corrcoef(Y_mixture.T))
simulator_mixture = DistroSimulator(
random_state=42,
residual_sampling="bootstrap",
use_rff=False
)
simulator_mixture.fit(Y_mixture, metric='mmd', n_trials=50)
Y_sim_mixture = simulator_mixture.sample(800)
print("\n3D Mixture Results:")
print(f"Best sigma: {simulator_mixture.best_params_['sigma']:.3f}, "
f"lambda: {simulator_mixture.best_params_['lambd']:.3f}, "
f"MMD: {simulator_mixture.best_score_:.3f}")
# Compare distributions
simulator_mixture.compare_distributions(Y_mixture, Y_sim_mixture)
print("\n" + "=" * 60)
print("EXAMPLE 4: Testing Different Residual Sampling Methods")
print("=" * 60)
# Test different sampling methods on univariate data
sampling_methods = ["bootstrap", "kde", "gmm"]
sampling_results = {}
for method in sampling_methods:
print(f"\nTesting {method.upper()} sampling...")
simulator_test = DistroSimulator(
random_state=42,
residual_sampling=method,
use_rff=False
)
simulator_test.fit(Y_uni, metric='wasserstein', n_trials=30)
Y_sim_test = simulator_test.sample(500)
# Calculate KS test for comparison
ks_stat, ks_pvalue = stats.ks_2samp(Y_uni.flatten(), Y_sim_test.flatten())
sampling_results[method] = {
'ks_statistic': ks_stat,
'ks_pvalue': ks_pvalue,
'best_score': simulator_test.best_score_
}
print(f" KS statistic: {ks_stat:.4f}, p-value: {ks_pvalue:.4f}")
print(f" Best distance: {simulator_test.best_score_:.4f}")
print("\nSampling Method Comparison:")
for method, results in sampling_results.items():
print(f"{method.upper()}: KS={results['ks_statistic']:.4f}, p={results['ks_pvalue']:.4f}, dist={results['best_score']:.4f}")
# Continue with the DistroSimulator class definition from previous code...
print("\n" + "=" * 60)
print("EXAMPLE 5: Digits Dataset (MNIST)")
print("=" * 60)
# Load digits dataset
digits = load_digits()
pca_digits = PCA(n_components=15, whiten=False)
Y_digits = pca_digits.fit_transform(digits.data)
print(f"Target Distribution: PCA-transformed digits dataset (15D)")
print(f"Sample size: {len(Y_digits)}")
# Create and fit the simulator for digits
simulator_digits = DistroSimulator(
random_state=42,
residual_sampling="bootstrap",
use_rff=True, # Enable RFF for larger dataset
)
simulator_digits.fit(Y_digits, metric='mmd', n_trials=50)
Y_sim_digits = simulator_digits.sample(len(Y_digits))
print("\nDigits Dataset Results:")
print(f"Best sigma: {simulator_digits.best_params_['sigma']:.3f}, "
f"lambda: {simulator_digits.best_params_['lambd']:.3f}, "
f"MMD: {simulator_digits.best_score_:.3f}")
def visualize_digits(real_data, sim_data, pca, n_samples=44):
"""Visualize original and simulated digits"""
# Inverse transform simulated data to original 64D space
sim_data_orig = pca.inverse_transform(sim_data)
# Select first n_samples from real and simulated data
real_data = real_data[:n_samples].reshape((4, 11, -1))
sim_data_orig = sim_data_orig[:n_samples].reshape((4, 11, -1))
# Plot 4x11 grid
fig, ax = plt.subplots(9, 11, figsize=(11, 9), subplot_kw=dict(xticks=[], yticks=[]))
for j in range(11):
ax[4, j].set_visible(False)
for i in range(4):
im = ax[i, j].imshow(
real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation="nearest"
)
im.set_clim(0, 16)
im = ax[i + 5, j].imshow(
sim_data_orig[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation="nearest"
)
im.set_clim(0, 16)
ax[0, 5].set_title("Selection from the input data", fontsize=12)
ax[5, 5].set_title("Simulated digits from residual-resampling model", fontsize=12)
plt.tight_layout()
plt.savefig('digits_comparison_distrosimulator.png', dpi=300, bbox_inches='tight')
plt.show()
# Visualize digits comparison
visualize_digits(digits.data, Y_sim_digits, pca_digits)
print("\n" + "=" * 60)
print("EXAMPLE 6: Olivetti Faces")
print("=" * 60)
# Load Olivetti faces
olivetti = fetch_olivetti_faces(shuffle=True, random_state=42)
Y_olivetti = olivetti.data
pca_olivetti = PCA(n_components=15, whiten=False)
Y_olivetti_pca = pca_olivetti.fit_transform(Y_olivetti)
print(f"Target Distribution: PCA-transformed Olivetti faces (15D)")
print(f"Sample size: {len(Y_olivetti_pca)}")
# Create and fit the simulator for Olivetti
simulator_olivetti = DistroSimulator(
random_state=42,
residual_sampling="bootstrap",
use_rff=True,
)
simulator_olivetti.fit(Y_olivetti_pca, metric='mmd', n_trials=50)
Y_sim_olivetti = simulator_olivetti.sample(len(Y_olivetti_pca))
print("\nOlivetti Faces Results:")
print(f"Best sigma: {simulator_olivetti.best_params_['sigma']:.3f}, "
f"lambda: {simulator_olivetti.best_params_['lambd']:.3f}, "
f"MMD: {simulator_olivetti.best_score_:.3f}")
def visualize_images(real_data, sim_data, pca, img_shape, dataset_name, n_samples=44):
"""Visualize original and simulated images"""
sim_data_orig = pca.inverse_transform(sim_data)
real_data = real_data[:n_samples].reshape((4, 11, -1))
sim_data_orig = sim_data_orig[:n_samples].reshape((4, 11, -1))
fig, ax = plt.subplots(9, 11, figsize=(11, 9), subplot_kw=dict(xticks=[], yticks=[]))
for j in range(11):
ax[4, j].set_visible(False)
for i in range(4):
im = ax[i, j].imshow(
real_data[i, j].reshape(img_shape), cmap=plt.cm.binary, interpolation="nearest"
)
im.set_clim(real_data.min(), real_data.max())
im = ax[i + 5, j].imshow(
sim_data_orig[i, j].reshape(img_shape), cmap=plt.cm.binary, interpolation="nearest"
)
im.set_clim(real_data.min(), real_data.max())
ax[0, 5].set_title(f"Selection from {dataset_name} data", fontsize=12)
ax[5, 5].set_title(f"Simulated {dataset_name} from DistroSimulator", fontsize=12)
plt.tight_layout()
plt.savefig(f'{dataset_name.lower()}_comparison_distrosimulator.png', dpi=300, bbox_inches='tight')
plt.show()
# Visualize Olivetti comparison
visualize_images(Y_olivetti, Y_sim_olivetti, pca_olivetti, img_shape=(64, 64), dataset_name="Olivetti")
print("\n" + "=" * 60)
print("EXAMPLE 7: Fashion-MNIST")
print("=" * 60)
# Load Fashion-MNIST (subsample for efficiency)
(X_train_fmnist, _), (_, _) = fashion_mnist.load_data()
Y_fmnist = X_train_fmnist.reshape(-1, 784) / 255.0 # Normalize to [0, 1]
n_subsample = 5000
idx = np.random.choice(len(Y_fmnist), n_subsample, replace=False)
Y_fmnist = Y_fmnist[idx]
pca_fmnist = PCA(n_components=15, whiten=False)
Y_fmnist_pca = pca_fmnist.fit_transform(Y_fmnist)
print(f"Target Distribution: PCA-transformed Fashion-MNIST (15D, subsampled)")
print(f"Sample size: {len(Y_fmnist_pca)}")
# Create and fit the simulator for Fashion-MNIST
simulator_fmnist = DistroSimulator(
random_state=42,
residual_sampling="bootstrap",
use_rff=True,
)
simulator_fmnist.fit(Y_fmnist_pca, metric='mmd', n_trials=50)
Y_sim_fmnist = simulator_fmnist.sample(len(Y_fmnist_pca))
print("\nFashion-MNIST Results:")
print(f"Best sigma: {simulator_fmnist.best_params_['sigma']:.3f}, "
f"lambda: {simulator_fmnist.best_params_['lambd']:.3f}, "
f"MMD: {simulator_fmnist.best_score_:.3f}")
# Visualize Fashion-MNIST comparison
visualize_images(Y_fmnist, Y_sim_fmnist, pca_fmnist, img_shape=(28, 28), dataset_name="Fashion-MNIST")
print("\n" + "=" * 60)
print("EXAMPLE 8: Advanced Sampling Methods Comparison")
print("=" * 60)
# Compare different sampling methods on Fashion-MNIST
sampling_methods_fmnist = ["bootstrap", "kde", "gmm"]
fmnist_results = {}
print("Comparing sampling methods on Fashion-MNIST...")
for method in sampling_methods_fmnist:
print(f"\nTesting {method.upper()} sampling...")
simulator_compare = DistroSimulator(
random_state=42,
residual_sampling=method,
use_rff=True,
)
# Use smaller subset for faster comparison
Y_fmnist_subset = Y_fmnist_pca[:1000]
simulator_compare.fit(Y_fmnist_subset, metric='mmd', n_trials=20)
Y_sim_compare = simulator_compare.sample(1000)
# Calculate distribution similarity metrics
energy_dist = simulator_compare._custom_energy_distance(Y_fmnist_subset, Y_sim_compare)
mmd_dist = simulator_compare._mmd(Y_fmnist_subset, Y_sim_compare)
fmnist_results[method] = {
'best_score': simulator_compare.best_score_,
'energy_distance': energy_dist,
'mmd': mmd_dist,
'sigma': simulator_compare.best_params_['sigma'],
'lambda': simulator_compare.best_params_['lambd']
}
print(f" Best MMD: {simulator_compare.best_score_:.4f}")
print(f" Energy distance: {energy_dist:.4f}")
print(f" Current MMD: {mmd_dist:.4f}")
print("\nFashion-MNIST Sampling Method Comparison:")
print("-" * 50)
for method, results in fmnist_results.items():
print(f"{method.upper():<12} | MMD: {results['best_score']:.4f} | "
f"Energy: {results['energy_distance']:.4f} | "
f"σ: {results['sigma']:.3f} | λ: {results['lambda']:.3f}")
print("\n" + "=" * 60)
print("EXAMPLE 9: Statistical Tests on Image Datasets")
print("=" * 60)
def perform_statistical_tests(Y_orig, Y_sim, dataset_name):
"""Perform comprehensive statistical tests on the results"""
print(f"\nStatistical Tests for {dataset_name}:")
print("-" * 40)
# Energy distance
energy_dist = simulator_digits._custom_energy_distance(Y_orig, Y_sim)
print(f"Energy Distance: {energy_dist:.6f}")
# MMD
mmd_dist = simulator_digits._mmd(Y_orig, Y_sim)
print(f"MMD: {mmd_dist:.6f}")
# Marginal KS tests
n_dims = Y_orig.shape[1]
ks_pvalues = []
for i in range(min(5, n_dims)): # Test first 5 dimensions
ks_stat, ks_pvalue = stats.ks_2samp(Y_orig[:, i], Y_sim[:, i])
ks_pvalues.append(ks_pvalue)
print(f"KS test p-values (first 5 dims): {[f'{p:.4f}' for p in ks_pvalues]}")
print(f"Min KS p-value: {min(ks_pvalues):.4f}")
# Correlation preservation
orig_corr = np.corrcoef(Y_orig.T)
sim_corr = np.corrcoef(Y_sim.T)
corr_diff = np.mean(np.abs(orig_corr - sim_corr))
print(f"Average correlation difference: {corr_diff:.4f}")
return {
'energy_distance': energy_dist,
'mmd': mmd_dist,
'min_ks_pvalue': min(ks_pvalues),
'avg_corr_diff': corr_diff
}
# Perform statistical tests on all datasets
datasets = {
'Digits': (Y_digits, Y_sim_digits),
'Olivetti': (Y_olivetti_pca, Y_sim_olivetti),
'Fashion-MNIST': (Y_fmnist_pca, Y_sim_fmnist)
}
statistical_results = {}
for name, (Y_orig, Y_sim) in datasets.items():
statistical_results[name] = perform_statistical_tests(Y_orig, Y_sim, name)
print("\n" + "=" * 60)
print("SUMMARY: All Dataset Results")
print("=" * 60)
print("\nPerformance Summary:")
print("-" * 80)
print(f"{'Dataset':<15} {'MMD':<10} {'Energy Dist':<12} {'Min KS p-val':<12} {'Avg Corr Diff':<12}")
print("-" * 80)
for name in statistical_results.keys():
results = statistical_results[name]
print(f"{name:<15} {results['mmd']:<10.6f} {results['energy_distance']:<12.6f} "
f"{results['min_ks_pvalue']:<12.4f} {results['avg_corr_diff']:<12.4f}")
print("\n" + "=" * 60)
print("EXAMPLE 10: Quality Assessment with Different PCA Dimensions")
print("=" * 60)
# Test with different PCA dimensions on Fashion-MNIST
pca_dims = [5, 10, 15, 20]
pca_results = {}
print("Testing different PCA dimensions on Fashion-MNIST...")
for n_components in pca_dims:
print(f"\nPCA with {n_components} components:")
# Apply PCA
pca_test = PCA(n_components=n_components, whiten=False)
Y_fmnist_test = pca_test.fit_transform(Y_fmnist[:2000]) # Use subset for speed
# Fit simulator
simulator_pca = DistroSimulator(
random_state=42,
residual_sampling="bootstrap",
use_rff=True,
)
simulator_pca.fit(Y_fmnist_test, metric='mmd', n_trials=20)
Y_sim_pca = simulator_pca.sample(len(Y_fmnist_test))
# Calculate metrics
energy_dist = simulator_pca._custom_energy_distance(Y_fmnist_test, Y_sim_pca)
mmd_dist = simulator_pca._mmd(Y_fmnist_test, Y_sim_pca)
pca_results[n_components] = {
'mmd': mmd_dist,
'energy': energy_dist,
'best_score': simulator_pca.best_score_,
'explained_variance': np.sum(pca_test.explained_variance_ratio_)
}
print(f" Explained variance: {pca_results[n_components]['explained_variance']:.3f}")
print(f" Best MMD: {simulator_pca.best_score_:.4f}")
print(f" Current MMD: {mmd_dist:.4f}")
print("\nPCA Dimension Comparison:")
print("-" * 50)
print(f"{'Components':<12} {'Explained Var':<14} {'Best MMD':<10} {'Current MMD':<12} {'Energy Dist':<12}")
print("-" * 50)
for n_comp, results in pca_results.items():
print(f"{n_comp:<12} {results['explained_variance']:<14.3f} "
f"{results['best_score']:<10.4f} {results['mmd']:<12.4f} {results['energy']:<12.4f}")
print("\n" + "=" * 60)
print("ALL EXAMPLES COMPLETED SUCCESSFULLY!")
print("=" * 60)
import pandas as pd
log_returns = pd.read_csv("https://raw.githubusercontent.com/Techtonique/datasets/refs/heads/main/time_series/multivariate/log_returns.csv")
log_returns.drop(columns=["Unnamed: 0"], inplace=True)
log_returns.index = pd.date_range(start="2024-04-24", periods=len(log_returns), freq="B")
display(log_returns.head())
display(log_returns.tail())
simulator_multi = DistroSimulator(
random_state=42,
n_clusters=1,
residual_sampling="bootstrap",
clustering_method="kmeans",
use_rff=True
)
# Pass the values (NumPy array) of the DataFrame to the fit method
simulator_multi.fit(log_returns.values, metric='mmd', n_trials=100)
Y_sim_multi = simulator_multi.sample(500)
print("Bivariate Results:")
print(f"Best sigma: {simulator_multi.best_params_['sigma']:.3f}, "
f"lambda: {simulator_multi.best_params_['lambd']:.3f}, "
f"MMD: {simulator_multi.best_score_:.3f}")
# Compare distributions
simulator_multi.compare_distributions(log_returns.values, Y_sim_multi)
[I 2025-10-17 17:10:36,729] A new study created in memory with name: no-name-efe52968-3328-4d29-9f90-53e6cfef1dac
[I 2025-10-17 17:10:36,741] Trial 0 finished with value: 0.13865139056120598 and parameters: {'sigma': 7.939529961485126, 'lambd': 0.00025564139075974225}. Best is trial 0 with value: 0.13865139056120598.
[I 2025-10-17 17:10:36,754] Trial 1 finished with value: 0.12509044170632658 and parameters: {'sigma': 0.016326612419707866, 'lambd': 0.10952025363677034}. Best is trial 1 with value: 0.12509044170632658.
[I 2025-10-17 17:10:36,765] Trial 2 finished with value: 0.11061164802462088 and parameters: {'sigma': 0.19798283142271447, 'lambd': 0.0011258694916476417}. Best is trial 2 with value: 0.11061164802462088.
[I 2025-10-17 17:10:36,778] Trial 3 finished with value: 0.1303733014116722 and parameters: {'sigma': 0.31407455296972825, 'lambd': 4.6783733209865167e-05}. Best is trial 2 with value: 0.11061164802462088.
[I 2025-10-17 17:10:36,786] Trial 4 finished with value: 0.10519036748633664 and parameters: {'sigma': 0.15294561056611258, 'lambd': 2.4914088337259825e-05}. Best is trial 4 with value: 0.10519036748633664.
[I 2025-10-17 17:10:36,794] Trial 5 finished with value: 0.09667308702726289 and parameters: {'sigma': 1.3081913048401494, 'lambd': 0.41987706182176376}. Best is trial 5 with value: 0.09667308702726289.
[I 2025-10-17 17:10:36,802] Trial 6 finished with value: 0.09351359591898555 and parameters: {'sigma': 1.2159760687292298, 'lambd': 0.010594581126969739}. Best is trial 6 with value: 0.09351359591898555.
[I 2025-10-17 17:10:36,810] Trial 7 finished with value: 0.09877115961508015 and parameters: {'sigma': 0.04323853207868255, 'lambd': 0.0006176112901161659}. Best is trial 6 with value: 0.09351359591898555.
[I 2025-10-17 17:10:36,818] Trial 8 finished with value: 0.13433598955243806 and parameters: {'sigma': 0.7818889178221696, 'lambd': 0.06829451533968077}. Best is trial 6 with value: 0.09351359591898555.
[I 2025-10-17 17:10:36,826] Trial 9 finished with value: 0.12295779498265826 and parameters: {'sigma': 0.29474225951883504, 'lambd': 0.0025226560420775787}. Best is trial 6 with value: 0.09351359591898555.
[I 2025-10-17 17:10:36,852] Trial 10 finished with value: 0.08831227645565284 and parameters: {'sigma': 8.072659644947068, 'lambd': 0.01692234323423254}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:36,866] Trial 11 finished with value: 0.12399196132507113 and parameters: {'sigma': 8.775162887575267, 'lambd': 0.017767342506139133}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:36,881] Trial 12 finished with value: 0.17818770991640567 and parameters: {'sigma': 2.527737204578802, 'lambd': 0.011641679359383473}. Best is trial 10 with value: 0.08831227645565284.
============================================================
EXAMPLE 1: Univariate Normal Distribution
============================================================
[I 2025-10-17 17:10:36,898] Trial 13 finished with value: 0.1278497464603523 and parameters: {'sigma': 2.717042401012473, 'lambd': 0.010335722904489154}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:36,913] Trial 14 finished with value: 0.15680270713277725 and parameters: {'sigma': 3.137505302734161, 'lambd': 0.8555898896591118}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:36,927] Trial 15 finished with value: 0.16245174417575825 and parameters: {'sigma': 0.7442012774099896, 'lambd': 0.044675924439867315}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:36,941] Trial 16 finished with value: 0.14322015475342245 and parameters: {'sigma': 4.698999529531017, 'lambd': 0.004964623961467108}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:36,956] Trial 17 finished with value: 0.12845078252055192 and parameters: {'sigma': 1.2880707463963539, 'lambd': 0.17594776427257966}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:36,975] Trial 18 finished with value: 0.13304115164019475 and parameters: {'sigma': 0.06484836062638796, 'lambd': 0.0001721243805060685}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:37,006] Trial 19 finished with value: 0.1376648176841346 and parameters: {'sigma': 0.6512141529898293, 'lambd': 0.028422846053845405}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:37,034] Trial 20 finished with value: 0.26553812848983 and parameters: {'sigma': 5.335786405065405, 'lambd': 0.002976720235114457}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:37,048] Trial 21 finished with value: 0.1379374770558697 and parameters: {'sigma': 1.3533690602502408, 'lambd': 0.5886737221572172}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:37,069] Trial 22 finished with value: 0.27616105484722264 and parameters: {'sigma': 1.7054854650386475, 'lambd': 0.17577601309842297}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:37,100] Trial 23 finished with value: 0.1423762460625137 and parameters: {'sigma': 0.6336686133486901, 'lambd': 0.3139003914271717}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:37,151] Trial 24 finished with value: 0.21270922380830065 and parameters: {'sigma': 4.2961436965412, 'lambd': 0.008000391630157054}. Best is trial 10 with value: 0.08831227645565284.
[I 2025-10-17 17:10:37,181] Trial 25 finished with value: 0.08773323157186091 and parameters: {'sigma': 1.8104612179407673, 'lambd': 0.03139386210623193}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,196] Trial 26 finished with value: 0.11326691381546121 and parameters: {'sigma': 2.211652991334354, 'lambd': 0.031043362187921742}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,214] Trial 27 finished with value: 0.17529467587665049 and parameters: {'sigma': 8.506835194616686, 'lambd': 0.0020254013143509593}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,236] Trial 28 finished with value: 0.10931573878689667 and parameters: {'sigma': 0.47663533895800214, 'lambd': 0.07273288977190787}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,258] Trial 29 finished with value: 0.13173542934293836 and parameters: {'sigma': 9.946548381791501, 'lambd': 0.00534649988918561}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,278] Trial 30 finished with value: 0.13466615353116962 and parameters: {'sigma': 5.390013361438354, 'lambd': 0.0004352873479542061}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,295] Trial 31 finished with value: 0.12739845765625216 and parameters: {'sigma': 1.1456962259848296, 'lambd': 0.47253514796617924}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,312] Trial 32 finished with value: 0.13523530561318498 and parameters: {'sigma': 1.6879829636620967, 'lambd': 0.021875474652266837}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,329] Trial 33 finished with value: 0.1543861983885528 and parameters: {'sigma': 3.5918928264067462, 'lambd': 0.12371426509412914}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,346] Trial 34 finished with value: 0.124087423999485 and parameters: {'sigma': 0.436327260616358, 'lambd': 0.26956045816759056}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,365] Trial 35 finished with value: 0.11419262249207385 and parameters: {'sigma': 0.12484226407061048, 'lambd': 0.05404856495829252}. Best is trial 25 with value: 0.08773323157186091.
[I 2025-10-17 17:10:37,386] Trial 36 finished with value: 0.07989423450503166 and parameters: {'sigma': 1.0373669923347824, 'lambd': 0.005860634936872617}. Best is trial 36 with value: 0.07989423450503166.
[I 2025-10-17 17:10:37,407] Trial 37 finished with value: 0.12309923159666655 and parameters: {'sigma': 0.016312322069009774, 'lambd': 0.001432166432744615}. Best is trial 36 with value: 0.07989423450503166.
[I 2025-10-17 17:10:37,424] Trial 38 finished with value: 0.10592598518285125 and parameters: {'sigma': 0.22018842698237467, 'lambd': 0.004747961704996959}. Best is trial 36 with value: 0.07989423450503166.
[I 2025-10-17 17:10:37,442] Trial 39 finished with value: 0.18387560583024581 and parameters: {'sigma': 0.8945922279320206, 'lambd': 1.013740576689216e-05}. Best is trial 36 with value: 0.07989423450503166.
[I 2025-10-17 17:10:37,474] Trial 40 finished with value: 0.0841440659778046 and parameters: {'sigma': 0.39255975213677985, 'lambd': 0.0008365913245914038}. Best is trial 36 with value: 0.07989423450503166.
[I 2025-10-17 17:10:37,503] Trial 41 finished with value: 0.1384268688656396 and parameters: {'sigma': 0.46620383062453347, 'lambd': 0.0011463911050532305}. Best is trial 36 with value: 0.07989423450503166.
[I 2025-10-17 17:10:37,530] Trial 42 finished with value: 0.17560429712757222 and parameters: {'sigma': 0.2707802864803906, 'lambd': 9.678803461845194e-05}. Best is trial 36 with value: 0.07989423450503166.
[I 2025-10-17 17:10:37,548] Trial 43 finished with value: 0.07859017899393293 and parameters: {'sigma': 0.1379048338144211, 'lambd': 0.014620117962116035}. Best is trial 43 with value: 0.07859017899393293.
[I 2025-10-17 17:10:37,570] Trial 44 finished with value: 0.14443117280787746 and parameters: {'sigma': 0.10618826118096122, 'lambd': 0.0006493692751477353}. Best is trial 43 with value: 0.07859017899393293.
[I 2025-10-17 17:10:37,588] Trial 45 finished with value: 0.11948151918682495 and parameters: {'sigma': 0.02658031202524431, 'lambd': 0.012720206673101468}. Best is trial 43 with value: 0.07859017899393293.
[I 2025-10-17 17:10:37,608] Trial 46 finished with value: 0.1504836103202269 and parameters: {'sigma': 0.07667874163490111, 'lambd': 0.007952656111460798}. Best is trial 43 with value: 0.07859017899393293.
[I 2025-10-17 17:10:37,625] Trial 47 finished with value: 0.15057885623741438 and parameters: {'sigma': 0.19661515571692617, 'lambd': 0.02108466739207806}. Best is trial 43 with value: 0.07859017899393293.
[I 2025-10-17 17:10:37,646] Trial 48 finished with value: 0.106031846594626 and parameters: {'sigma': 0.36582581781031204, 'lambd': 0.0006843719509585771}. Best is trial 43 with value: 0.07859017899393293.
[I 2025-10-17 17:10:37,663] Trial 49 finished with value: 0.15447925883266217 and parameters: {'sigma': 2.027974253634049, 'lambd': 0.0002741800125024495}. Best is trial 43 with value: 0.07859017899393293.
/usr/local/lib/python3.12/dist-packages/synthe/distro_simulator.py:840: UserWarning: p-value capped: true value larger than 0.25. Consider specifying `method` (e.g. `method=stats.PermutationMethod()`.)
ad_result = stats.anderson_ksamp([Y_orig[:, i], Y_sim[:, i]])
Using standard kernel method
Univariate Results:
Best sigma: 0.138, lambda: 0.015, dist: 0.079
============================================================
COMPREHENSIVE STATISTICAL TEST RESULTS
============================================================
Dimension 1:
Kolmogorov-Smirnov Test:
Statistic: 0.085000
p-value: 0.466286
Significance: Not Significant
Anderson-Darling Test:
Statistic: -0.231175
Significance level: 0.250
Interpretation: Distributions similar
[I 2025-10-17 17:10:39,785] A new study created in memory with name: no-name-10680fd7-63aa-40f0-bc75-7b35ff67937f
[I 2025-10-17 17:10:39,795] Trial 0 finished with value: 0.00757912609023359 and parameters: {'sigma': 0.45159380533833304, 'lambd': 0.015285458488091496}. Best is trial 0 with value: 0.00757912609023359.
[I 2025-10-17 17:10:39,804] Trial 1 finished with value: 0.0059033877506062815 and parameters: {'sigma': 0.12790641295619623, 'lambd': 0.0004048349417403313}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:39,813] Trial 2 finished with value: 0.0059681315590341955 and parameters: {'sigma': 0.15660249417198127, 'lambd': 3.821498240714095e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:39,831] Trial 3 finished with value: 0.019895296434778387 and parameters: {'sigma': 0.4539775047736735, 'lambd': 0.2195055073038003}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:39,853] Trial 4 finished with value: 0.009334331736636337 and parameters: {'sigma': 0.2084698360391535, 'lambd': 0.021156584230896905}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:39,873] Trial 5 finished with value: 0.006078835083101253 and parameters: {'sigma': 0.07582284188991656, 'lambd': 0.00352790339986226}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:39,889] Trial 6 finished with value: 0.007823377016179744 and parameters: {'sigma': 0.09788729151873958, 'lambd': 0.037845505055796216}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:39,905] Trial 7 finished with value: 0.005905455655558112 and parameters: {'sigma': 0.11161285143637067, 'lambd': 0.0009087693109192781}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:39,914] Trial 8 finished with value: 0.03108532342364745 and parameters: {'sigma': 0.16926811143879536, 'lambd': 0.5215610123378658}. Best is trial 1 with value: 0.0059033877506062815.
============================================================
EXAMPLE 2: Bivariate Normal Distribution
============================================================
[I 2025-10-17 17:10:39,948] Trial 9 finished with value: 0.014651863548524768 and parameters: {'sigma': 2.9317020954021613, 'lambd': 0.00021401291624394104}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,002] Trial 10 finished with value: 0.005972010919200521 and parameters: {'sigma': 0.011390996824054764, 'lambd': 1.4186864699397386e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,043] Trial 11 finished with value: 0.005978898510451969 and parameters: {'sigma': 0.025226449193894822, 'lambd': 0.00038349171532250323}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,078] Trial 12 finished with value: 0.012282238125339018 and parameters: {'sigma': 1.0918349668661071, 'lambd': 0.00034852584464863524}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,132] Trial 13 finished with value: 0.005982311706606014 and parameters: {'sigma': 0.0368393574840666, 'lambd': 0.0017638872045388284}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,155] Trial 14 finished with value: 0.012738519376381374 and parameters: {'sigma': 6.338899865357751, 'lambd': 0.0020615333755626543}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,173] Trial 15 finished with value: 0.005971251329131011 and parameters: {'sigma': 0.05073355003082267, 'lambd': 8.112402084964673e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,197] Trial 16 finished with value: 0.01986741617468679 and parameters: {'sigma': 1.0294183706643432, 'lambd': 0.0008616034400650235}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,215] Trial 17 finished with value: 0.005940423212321133 and parameters: {'sigma': 0.017894636618105097, 'lambd': 0.006382033372172324}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,232] Trial 18 finished with value: 0.013846329689912285 and parameters: {'sigma': 0.7847306673543072, 'lambd': 9.391867894409297e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,248] Trial 19 finished with value: 0.005984791904521614 and parameters: {'sigma': 0.07498170902050637, 'lambd': 0.0008964814539169048}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,268] Trial 20 finished with value: 0.00590493798581071 and parameters: {'sigma': 2.303180498591104, 'lambd': 1.2692262285785782e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,289] Trial 21 finished with value: 0.013284733040663244 and parameters: {'sigma': 2.547375209843448, 'lambd': 1.4361814513361906e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,307] Trial 22 finished with value: 0.006192467239163224 and parameters: {'sigma': 0.2849470595265868, 'lambd': 3.993264000267063e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,331] Trial 23 finished with value: 0.00646916050945523 and parameters: {'sigma': 2.1092080221678526, 'lambd': 0.00013694959408941666}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,348] Trial 24 finished with value: 0.016612418722344535 and parameters: {'sigma': 5.368605745160852, 'lambd': 0.07926997981131215}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,375] Trial 25 finished with value: 0.006080770866824792 and parameters: {'sigma': 0.11121754671622948, 'lambd': 0.005843634506968388}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,399] Trial 26 finished with value: 0.008931797593683455 and parameters: {'sigma': 0.5097612584555968, 'lambd': 0.0005546335560550102}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,426] Trial 27 finished with value: 0.0059721512004148325 and parameters: {'sigma': 0.04917088818781612, 'lambd': 2.678805141519147e-05}. Best is trial 1 with value: 0.0059033877506062815.
[I 2025-10-17 17:10:40,460] Trial 28 finished with value: 0.005263531112211672 and parameters: {'sigma': 9.830200296841944, 'lambd': 1.0460311142198797e-05}. Best is trial 28 with value: 0.005263531112211672.
[I 2025-10-17 17:10:40,486] Trial 29 finished with value: 0.007010917012259199 and parameters: {'sigma': 4.033077781417283, 'lambd': 1.212958213094797e-05}. Best is trial 28 with value: 0.005263531112211672.
[I 2025-10-17 17:10:40,509] Trial 30 finished with value: 0.00666128384170428 and parameters: {'sigma': 8.341705342911675, 'lambd': 5.973974522910358e-05}. Best is trial 28 with value: 0.005263531112211672.
[I 2025-10-17 17:10:40,531] Trial 31 finished with value: 0.00818908721297329 and parameters: {'sigma': 9.715800951907788, 'lambd': 2.803787526331052e-05}. Best is trial 28 with value: 0.005263531112211672.
[I 2025-10-17 17:10:40,556] Trial 32 finished with value: 0.00405157901540576 and parameters: {'sigma': 1.5469422602408454, 'lambd': 0.00018314584836766346}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,573] Trial 33 finished with value: 0.005993794092372662 and parameters: {'sigma': 1.7348207795912711, 'lambd': 0.00017926463377286288}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,598] Trial 34 finished with value: 0.020376976136829428 and parameters: {'sigma': 1.5560232693096554, 'lambd': 2.7527416134195413e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,619] Trial 35 finished with value: 0.0054895924055294865 and parameters: {'sigma': 3.5522060828011224, 'lambd': 7.590833231219877e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,643] Trial 36 finished with value: 0.010598500165818092 and parameters: {'sigma': 3.4112371058073636, 'lambd': 0.00023766404115756784}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,661] Trial 37 finished with value: 0.007392157990843029 and parameters: {'sigma': 4.8586312553589694, 'lambd': 5.895004118979393e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,687] Trial 38 finished with value: 0.005789366125415141 and parameters: {'sigma': 0.2814669231042328, 'lambd': 4.400105129973596e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,705] Trial 39 finished with value: 0.012906009342960045 and parameters: {'sigma': 0.5440717502398419, 'lambd': 3.884538531848992e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,722] Trial 40 finished with value: 0.007536426186959266 and parameters: {'sigma': 7.602461372035633, 'lambd': 0.0001271466709381745}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,743] Trial 41 finished with value: 0.005936508295067311 and parameters: {'sigma': 0.2443773894402853, 'lambd': 5.8855140656128954e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,762] Trial 42 finished with value: 0.005937198137503041 and parameters: {'sigma': 0.18273195400186693, 'lambd': 2.1614468808108084e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,780] Trial 43 finished with value: 0.006066602937505827 and parameters: {'sigma': 0.15030276803006165, 'lambd': 0.00026135901348521383}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,798] Trial 44 finished with value: 0.010078373248892158 and parameters: {'sigma': 0.6281725628829741, 'lambd': 0.0004978931386984565}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,818] Trial 45 finished with value: 0.0061335698164645125 and parameters: {'sigma': 0.3572496236200006, 'lambd': 0.00011132690566631603}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,835] Trial 46 finished with value: 0.010811604839440436 and parameters: {'sigma': 0.3519755597235105, 'lambd': 0.0015599793121436572}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,852] Trial 47 finished with value: 0.010744682406860329 and parameters: {'sigma': 1.3683232459045307, 'lambd': 0.9318246793967383}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,874] Trial 48 finished with value: 0.012614978950124422 and parameters: {'sigma': 3.7355753354296075, 'lambd': 5.2850162852263505e-05}. Best is trial 32 with value: 0.00405157901540576.
[I 2025-10-17 17:10:40,894] Trial 49 finished with value: 0.007101821024179 and parameters: {'sigma': 0.911147202871469, 'lambd': 1.944994649386531e-05}. Best is trial 32 with value: 0.00405157901540576.
Using standard kernel method
Bivariate Results:
Best sigma: 1.547, lambda: 0.000, MMD: 0.004
============================================================
COMPREHENSIVE STATISTICAL TEST RESULTS
============================================================
Dimension 1:
Kolmogorov-Smirnov Test:
Statistic: 0.135000
p-value: 0.052139
Significance: Not Significant
Anderson-Darling Test:
Statistic: 0.967242
Significance level: 0.131
Interpretation: Distributions similar
Dimension 2:
Kolmogorov-Smirnov Test:
Statistic: 0.115000
p-value: 0.142075
Significance: Not Significant
Anderson-Darling Test:
Statistic: 1.716362
Significance level: 0.064
Interpretation: Distributions similar
[I 2025-10-17 17:10:42,624] A new study created in memory with name: no-name-5b2b3fcf-175e-48a3-9322-489de8a57193
[I 2025-10-17 17:10:42,668] Trial 0 finished with value: 0.002322687734283846 and parameters: {'sigma': 0.16553926571933472, 'lambd': 0.004991740104386651}. Best is trial 0 with value: 0.002322687734283846.
[I 2025-10-17 17:10:42,775] Trial 1 finished with value: 0.0023946794765971335 and parameters: {'sigma': 0.012643730233777423, 'lambd': 8.911299157347148e-05}. Best is trial 0 with value: 0.002322687734283846.
============================================================
EXAMPLE 3: 3D Multivariate Mixture
============================================================
Target Distribution: 3D mixture of multivariate normals
Sample size: 800
Original correlation matrix:
[[ 1. -0.43924198 0.57623006]
[-0.43924198 1. -0.33956797]
[ 0.57623006 -0.33956797 1. ]]
[I 2025-10-17 17:10:42,975] Trial 2 finished with value: 0.03428236149102548 and parameters: {'sigma': 0.06916930987044892, 'lambd': 0.47429778061506705}. Best is trial 0 with value: 0.002322687734283846.
[I 2025-10-17 17:10:43,078] Trial 3 finished with value: 0.002315504743073793 and parameters: {'sigma': 0.09484851007747586, 'lambd': 0.008642303735943588}. Best is trial 3 with value: 0.002315504743073793.
[I 2025-10-17 17:10:43,168] Trial 4 finished with value: 0.007531830389713973 and parameters: {'sigma': 2.6004293571016053, 'lambd': 0.007058778679729241}. Best is trial 3 with value: 0.002315504743073793.
[I 2025-10-17 17:10:43,298] Trial 5 finished with value: 0.004672777165316999 and parameters: {'sigma': 9.091841031092143, 'lambd': 0.0031342957672057946}. Best is trial 3 with value: 0.002315504743073793.
[I 2025-10-17 17:10:43,390] Trial 6 finished with value: 0.004402539950321804 and parameters: {'sigma': 0.15266972392493955, 'lambd': 0.0911534996451324}. Best is trial 3 with value: 0.002315504743073793.
[I 2025-10-17 17:10:43,488] Trial 7 finished with value: 0.002296862036165137 and parameters: {'sigma': 0.3039963885287504, 'lambd': 0.0008347858479977647}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:43,581] Trial 8 finished with value: 0.01010787875621838 and parameters: {'sigma': 0.8234828574603542, 'lambd': 0.0033817821608881477}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:43,773] Trial 9 finished with value: 0.0025190831444356077 and parameters: {'sigma': 0.49601533744733156, 'lambd': 1.9645713944030023e-05}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:43,853] Trial 10 finished with value: 0.0023921407517389914 and parameters: {'sigma': 0.02188134511517753, 'lambd': 0.00026650085454558943}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:43,943] Trial 11 finished with value: 0.0023887182652336802 and parameters: {'sigma': 0.05578309007583408, 'lambd': 0.0004854168964132118}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,000] Trial 12 finished with value: 0.016425948557974357 and parameters: {'sigma': 0.9107453578601367, 'lambd': 0.08763754049672833}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,057] Trial 13 finished with value: 0.0027746914908431952 and parameters: {'sigma': 0.20720810125813763, 'lambd': 0.030693671202997774}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,148] Trial 14 finished with value: 0.0023900597358126607 and parameters: {'sigma': 0.05266483670168091, 'lambd': 0.0006249228920858126}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,214] Trial 15 finished with value: 0.00895641286226373 and parameters: {'sigma': 1.7759425853939916, 'lambd': 0.016387526247155528}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,267] Trial 16 finished with value: 0.0023905725403942646 and parameters: {'sigma': 0.3509681793535357, 'lambd': 0.001350311650664697}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,333] Trial 17 finished with value: 0.002394464905209309 and parameters: {'sigma': 0.10815721085259188, 'lambd': 8.086837012160703e-05}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,391] Trial 18 finished with value: 0.04069665159895297 and parameters: {'sigma': 0.017250748510764396, 'lambd': 0.8851512816326714}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,494] Trial 19 finished with value: 0.002395567079509525 and parameters: {'sigma': 0.028997839096446053, 'lambd': 1.1638018685172846e-05}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,577] Trial 20 finished with value: 0.010111222005180498 and parameters: {'sigma': 0.38593675532040145, 'lambd': 0.0387229196515953}. Best is trial 7 with value: 0.002296862036165137.
[I 2025-10-17 17:10:44,678] Trial 21 finished with value: 0.0021541318928401942 and parameters: {'sigma': 0.19762623024925685, 'lambd': 0.007929816182119864}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:44,787] Trial 22 finished with value: 0.002378061423397304 and parameters: {'sigma': 0.0923780023235256, 'lambd': 0.0014748972670946183}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:44,884] Trial 23 finished with value: 0.0024238001246560947 and parameters: {'sigma': 0.23261746644467263, 'lambd': 0.012795959534371971}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,167] Trial 24 finished with value: 0.0023794237221544667 and parameters: {'sigma': 0.042975479596360014, 'lambd': 0.0015704994024101707}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,275] Trial 25 finished with value: 0.02017891290883156 and parameters: {'sigma': 0.67040565221192, 'lambd': 0.16299274982749287}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,335] Trial 26 finished with value: 0.016678392124417712 and parameters: {'sigma': 1.2780132866715221, 'lambd': 0.00015657209367814595}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,403] Trial 27 finished with value: 0.010600164468300366 and parameters: {'sigma': 3.56649190273539, 'lambd': 0.01134919961042482}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,473] Trial 28 finished with value: 0.0023862955791874585 and parameters: {'sigma': 0.10857999584264684, 'lambd': 0.0007134387854167455}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,570] Trial 29 finished with value: 0.0022612649295274956 and parameters: {'sigma': 0.21024736111290368, 'lambd': 0.0039453342062811736}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,713] Trial 30 finished with value: 0.0022429111066801233 and parameters: {'sigma': 0.22907683017109987, 'lambd': 0.003102083029909277}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,816] Trial 31 finished with value: 0.0021719459773751337 and parameters: {'sigma': 0.25679546697079264, 'lambd': 0.003654438948376939}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:45,942] Trial 32 finished with value: 0.002311676035517296 and parameters: {'sigma': 0.1799856753167514, 'lambd': 0.003536379169112489}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:46,174] Trial 33 finished with value: 0.01586367428450669 and parameters: {'sigma': 0.5189115754346222, 'lambd': 0.024506294597311785}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:46,500] Trial 34 finished with value: 0.0022823057189398366 and parameters: {'sigma': 0.15106047175615514, 'lambd': 0.0064560917829212675}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:46,821] Trial 35 finished with value: 0.002207439625224683 and parameters: {'sigma': 0.2690957863407665, 'lambd': 0.0020582317709508667}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:46,969] Trial 36 finished with value: 0.0023656518707455 and parameters: {'sigma': 0.27958225592286023, 'lambd': 0.0018147599554297201}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:47,094] Trial 37 finished with value: 0.012055678104367196 and parameters: {'sigma': 0.4972048377087801, 'lambd': 0.006337420027963177}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:47,278] Trial 38 finished with value: 0.0023668711082727167 and parameters: {'sigma': 0.0774340797758398, 'lambd': 0.002364113441903739}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:47,405] Trial 39 finished with value: 0.002391048476465374 and parameters: {'sigma': 0.13351772565481423, 'lambd': 0.0002459427092328238}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:47,529] Trial 40 finished with value: 0.012000504553038305 and parameters: {'sigma': 1.127068459413218, 'lambd': 0.06143073665103903}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:47,769] Trial 41 finished with value: 0.002171391196809036 and parameters: {'sigma': 0.27043830682403536, 'lambd': 0.004400975348743673}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:47,886] Trial 42 finished with value: 0.0024139646574208307 and parameters: {'sigma': 0.3127641492997159, 'lambd': 0.004706344537476109}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:48,012] Trial 43 finished with value: 0.005614565541952721 and parameters: {'sigma': 0.39694888243280346, 'lambd': 0.009149700235344078}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:48,125] Trial 44 finished with value: 0.009745641709428488 and parameters: {'sigma': 0.608386250374016, 'lambd': 0.002584190023936653}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:48,236] Trial 45 finished with value: 0.002342787177038952 and parameters: {'sigma': 0.25801610436011324, 'lambd': 0.0010419308418912311}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:48,324] Trial 46 finished with value: 0.0023821192222296117 and parameters: {'sigma': 0.18553819450020023, 'lambd': 0.00043855094598624204}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:48,422] Trial 47 finished with value: 0.0023344955892924957 and parameters: {'sigma': 0.13677907726737057, 'lambd': 0.006507007221160386}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:48,544] Trial 48 finished with value: 0.0022756570759907002 and parameters: {'sigma': 0.06709836279337231, 'lambd': 0.01828455117024619}. Best is trial 21 with value: 0.0021541318928401942.
[I 2025-10-17 17:10:48,630] Trial 49 finished with value: 0.011383993727818953 and parameters: {'sigma': 0.7736542207608815, 'lambd': 0.00103240120427897}. Best is trial 21 with value: 0.0021541318928401942.
Using standard kernel method
3D Mixture Results:
Best sigma: 0.198, lambda: 0.008, MMD: 0.002
/usr/local/lib/python3.12/dist-packages/synthe/distro_simulator.py:840: UserWarning: p-value floored: true value smaller than 0.001. Consider specifying `method` (e.g. `method=stats.PermutationMethod()`.)
ad_result = stats.anderson_ksamp([Y_orig[:, i], Y_sim[:, i]])
============================================================
COMPREHENSIVE STATISTICAL TEST RESULTS
============================================================
Dimension 1:
Kolmogorov-Smirnov Test:
Statistic: 0.152500
p-value: 0.000000
Significance: SIGNIFICANT
Anderson-Darling Test:
Statistic: 18.737273
Significance level: 0.001
Interpretation: Distributions differ
Dimension 2:
Kolmogorov-Smirnov Test:
Statistic: 0.088750
p-value: 0.003652
Significance: SIGNIFICANT
Anderson-Darling Test:
Statistic: 10.100227
Significance level: 0.001
Interpretation: Distributions differ
Dimension 3:
Kolmogorov-Smirnov Test:
Statistic: 0.103750
p-value: 0.000360
Significance: SIGNIFICANT
Anderson-Darling Test:
Statistic: 13.258901
Significance level: 0.001
Interpretation: Distributions differ
[I 2025-10-17 17:10:51,551] A new study created in memory with name: no-name-5ddfb6ed-edf9-45ed-8cd7-5658c8a522bb
[I 2025-10-17 17:10:51,560] Trial 0 finished with value: 0.126090061994121 and parameters: {'sigma': 0.2643067570756047, 'lambd': 0.018681351433384473}. Best is trial 0 with value: 0.126090061994121.
[I 2025-10-17 17:10:51,569] Trial 1 finished with value: 0.10712502789702817 and parameters: {'sigma': 3.501479257993283, 'lambd': 0.04839053846593362}. Best is trial 1 with value: 0.10712502789702817.
[I 2025-10-17 17:10:51,576] Trial 2 finished with value: 0.11946731152209171 and parameters: {'sigma': 0.7505384099474822, 'lambd': 0.00045853257340076154}. Best is trial 1 with value: 0.10712502789702817.
[I 2025-10-17 17:10:51,584] Trial 3 finished with value: 0.16591846773442662 and parameters: {'sigma': 0.02695576864818756, 'lambd': 0.8550465412648137}. Best is trial 1 with value: 0.10712502789702817.
[I 2025-10-17 17:10:51,593] Trial 4 finished with value: 0.20850412805744512 and parameters: {'sigma': 7.289134593325246, 'lambd': 1.7316492571233098e-05}. Best is trial 1 with value: 0.10712502789702817.
[I 2025-10-17 17:10:51,601] Trial 5 finished with value: 0.11293804338917358 and parameters: {'sigma': 0.07384305773658001, 'lambd': 2.8565747721623684e-05}. Best is trial 1 with value: 0.10712502789702817.
[I 2025-10-17 17:10:51,611] Trial 6 finished with value: 0.08655468214633288 and parameters: {'sigma': 0.17105047550211236, 'lambd': 0.23018094864773014}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,623] Trial 7 finished with value: 0.11584616852137554 and parameters: {'sigma': 0.09982331960790443, 'lambd': 0.005062264263452878}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,635] Trial 8 finished with value: 0.12160725498433832 and parameters: {'sigma': 0.8830408060312631, 'lambd': 0.00241427928594918}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,645] Trial 9 finished with value: 0.15553142512785495 and parameters: {'sigma': 0.06241990840840007, 'lambd': 0.0030959894718095835}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,662] Trial 10 finished with value: 0.15168833166037637 and parameters: {'sigma': 0.016275969780852027, 'lambd': 0.915025474741849}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,680] Trial 11 finished with value: 0.1239641361130665 and parameters: {'sigma': 4.321476418174071, 'lambd': 0.08993403898193073}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,699] Trial 12 finished with value: 0.17527401096984818 and parameters: {'sigma': 2.014707166904962, 'lambd': 0.09732224811375152}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,717] Trial 13 finished with value: 0.15465280900054099 and parameters: {'sigma': 0.24549872596169775, 'lambd': 0.10706178721011705}. Best is trial 6 with value: 0.08655468214633288.
============================================================
EXAMPLE 4: Testing Different Residual Sampling Methods
============================================================
Testing BOOTSTRAP sampling...
[I 2025-10-17 17:10:51,738] Trial 14 finished with value: 0.1831847103127754 and parameters: {'sigma': 1.137209792503289, 'lambd': 0.026380668509087234}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,755] Trial 15 finished with value: 0.16250863469927654 and parameters: {'sigma': 2.949104595930344, 'lambd': 0.23705851826736943}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,771] Trial 16 finished with value: 0.14320336053562907 and parameters: {'sigma': 9.61264510321515, 'lambd': 0.018702015797929416}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,787] Trial 17 finished with value: 0.11849372500700509 and parameters: {'sigma': 0.5727287941566578, 'lambd': 0.0004336809056763512}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,807] Trial 18 finished with value: 0.09103771134558808 and parameters: {'sigma': 0.14078625480721782, 'lambd': 0.35759592791332584}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,825] Trial 19 finished with value: 0.15529309047299367 and parameters: {'sigma': 0.15687598766759772, 'lambd': 0.32098342049411455}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,843] Trial 20 finished with value: 0.21249698896648145 and parameters: {'sigma': 0.04352645155211563, 'lambd': 0.2986655259013703}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,860] Trial 21 finished with value: 0.12446920809848944 and parameters: {'sigma': 0.40896873575816406, 'lambd': 0.04025128172659398}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,877] Trial 22 finished with value: 0.214246109021799 and parameters: {'sigma': 0.1227572367464457, 'lambd': 0.007795627557608306}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,890] Trial 23 finished with value: 0.12724597136541754 and parameters: {'sigma': 0.1955139561393979, 'lambd': 0.432052449706986}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,905] Trial 24 finished with value: 0.22618259142434807 and parameters: {'sigma': 1.5338131890431885, 'lambd': 0.05673321983411569}. Best is trial 6 with value: 0.08655468214633288.
[I 2025-10-17 17:10:51,917] Trial 25 finished with value: 0.0839396644595838 and parameters: {'sigma': 0.5062447835342266, 'lambd': 0.1641721928230246}. Best is trial 25 with value: 0.0839396644595838.
[I 2025-10-17 17:10:51,931] Trial 26 finished with value: 0.09461913952075693 and parameters: {'sigma': 0.38279734449507724, 'lambd': 0.1612976072489705}. Best is trial 25 with value: 0.0839396644595838.
[I 2025-10-17 17:10:51,945] Trial 27 finished with value: 0.11048779571366252 and parameters: {'sigma': 0.010154030999880265, 'lambd': 0.000993428532341461}. Best is trial 25 with value: 0.0839396644595838.
[I 2025-10-17 17:10:51,959] Trial 28 finished with value: 0.10137898104773796 and parameters: {'sigma': 0.03629209965428483, 'lambd': 6.870102759716288e-05}. Best is trial 25 with value: 0.0839396644595838.
[I 2025-10-17 17:10:51,972] Trial 29 finished with value: 0.18324432731185777 and parameters: {'sigma': 0.28343457752655665, 'lambd': 0.011804422837614473}. Best is trial 25 with value: 0.0839396644595838.
[I 2025-10-17 17:10:52,011] A new study created in memory with name: no-name-6efbb49d-d2de-472c-981d-6e83b97032a4
Using standard kernel method
KS statistic: 0.0500, p-value: 0.9647
Best distance: 0.0839
Testing KDE sampling...
[I 2025-10-17 17:10:52,910] Trial 0 finished with value: 0.18385361197237915 and parameters: {'sigma': 2.0612469473171453, 'lambd': 2.4909683832761306e-05}. Best is trial 0 with value: 0.18385361197237915.
[I 2025-10-17 17:10:53,730] Trial 1 finished with value: 0.21070755305280472 and parameters: {'sigma': 6.280863368189164, 'lambd': 0.5104498334793268}. Best is trial 0 with value: 0.18385361197237915.
[I 2025-10-17 17:10:54,576] Trial 2 finished with value: 0.11336026172619304 and parameters: {'sigma': 0.25898949220151785, 'lambd': 0.060873011711652145}. Best is trial 2 with value: 0.11336026172619304.
[I 2025-10-17 17:10:55,451] Trial 3 finished with value: 0.20188973079013808 and parameters: {'sigma': 1.2249323997904993, 'lambd': 0.0915417778787923}. Best is trial 2 with value: 0.11336026172619304.
[I 2025-10-17 17:10:56,298] Trial 4 finished with value: 0.16684439544614266 and parameters: {'sigma': 0.09413655744355204, 'lambd': 0.009379793504264945}. Best is trial 2 with value: 0.11336026172619304.
[I 2025-10-17 17:10:57,198] Trial 5 finished with value: 0.1182555390873471 and parameters: {'sigma': 0.8046438706015777, 'lambd': 1.3801715753622091e-05}. Best is trial 2 with value: 0.11336026172619304.
[I 2025-10-17 17:10:58,044] Trial 6 finished with value: 0.10863816883871437 and parameters: {'sigma': 0.34747167545210006, 'lambd': 0.7061696877748173}. Best is trial 6 with value: 0.10863816883871437.
[I 2025-10-17 17:10:59,240] Trial 7 finished with value: 0.19725290909078744 and parameters: {'sigma': 1.1832211323438686, 'lambd': 0.0001842091702679514}. Best is trial 6 with value: 0.10863816883871437.
[I 2025-10-17 17:11:00,406] Trial 8 finished with value: 0.12501266804695518 and parameters: {'sigma': 0.028255240522301224, 'lambd': 0.0011678640730050848}. Best is trial 6 with value: 0.10863816883871437.
[I 2025-10-17 17:11:01,456] Trial 9 finished with value: 0.15785329783545088 and parameters: {'sigma': 1.8413423766063775, 'lambd': 0.0003887933265015829}. Best is trial 6 with value: 0.10863816883871437.
[I 2025-10-17 17:11:02,309] Trial 10 finished with value: 0.1510896215446208 and parameters: {'sigma': 0.026108990764570215, 'lambd': 0.6438638027013004}. Best is trial 6 with value: 0.10863816883871437.
[I 2025-10-17 17:11:03,186] Trial 11 finished with value: 0.11596141856556216 and parameters: {'sigma': 0.21671102465202588, 'lambd': 0.0357151370986787}. Best is trial 6 with value: 0.10863816883871437.
[I 2025-10-17 17:11:03,999] Trial 12 finished with value: 0.12141474014778143 and parameters: {'sigma': 0.2043593825870261, 'lambd': 0.08679014364545526}. Best is trial 6 with value: 0.10863816883871437.
[I 2025-10-17 17:11:04,867] Trial 13 finished with value: 0.09675032326467109 and parameters: {'sigma': 0.0886563038646677, 'lambd': 0.8805290478682786}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:05,698] Trial 14 finished with value: 0.1973624160096657 and parameters: {'sigma': 0.010512908495556349, 'lambd': 0.9613604694579202}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:06,539] Trial 15 finished with value: 0.13042649286063526 and parameters: {'sigma': 0.0758498761540105, 'lambd': 0.016657529151235657}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:07,380] Trial 16 finished with value: 0.1792959182699163 and parameters: {'sigma': 0.08331243794323515, 'lambd': 0.23997762822584448}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:08,325] Trial 17 finished with value: 0.3320075625048077 and parameters: {'sigma': 0.6942526467341413, 'lambd': 0.0040423964395044434}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:09,204] Trial 18 finished with value: 0.1616004751811014 and parameters: {'sigma': 0.3995802106880106, 'lambd': 0.24024205722570893}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:10,044] Trial 19 finished with value: 0.15240247777947877 and parameters: {'sigma': 5.415923969234125, 'lambd': 0.18033475147020625}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:10,899] Trial 20 finished with value: 0.1731717621885773 and parameters: {'sigma': 0.03985433182233417, 'lambd': 0.010387836002364932}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:12,222] Trial 21 finished with value: 0.1940115309553195 and parameters: {'sigma': 0.3009915195912629, 'lambd': 0.05085417560452917}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:13,581] Trial 22 finished with value: 0.12760028994228972 and parameters: {'sigma': 0.1335554861064011, 'lambd': 0.9408771609444139}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:14,465] Trial 23 finished with value: 0.13024616344003676 and parameters: {'sigma': 0.5118824999102928, 'lambd': 0.2825250351194016}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:15,315] Trial 24 finished with value: 0.11215053387501217 and parameters: {'sigma': 0.14455403335916048, 'lambd': 0.10210538660477085}. Best is trial 13 with value: 0.09675032326467109.
[I 2025-10-17 17:11:16,175] Trial 25 finished with value: 0.08451317043238248 and parameters: {'sigma': 0.0589975521527248, 'lambd': 0.1502134247521258}. Best is trial 25 with value: 0.08451317043238248.
[I 2025-10-17 17:11:17,020] Trial 26 finished with value: 0.12313487566964666 and parameters: {'sigma': 0.04840561135849796, 'lambd': 0.02435692615210083}. Best is trial 25 with value: 0.08451317043238248.
[I 2025-10-17 17:11:17,859] Trial 27 finished with value: 0.1590439693216088 and parameters: {'sigma': 0.011361945668579652, 'lambd': 0.39780572632219235}. Best is trial 25 with value: 0.08451317043238248.
[I 2025-10-17 17:11:18,685] Trial 28 finished with value: 0.11980431712826911 and parameters: {'sigma': 0.05556590247652049, 'lambd': 0.13535457154715133}. Best is trial 25 with value: 0.08451317043238248.
[I 2025-10-17 17:11:19,589] Trial 29 finished with value: 0.10008414358303983 and parameters: {'sigma': 0.02289576259952689, 'lambd': 0.4103907878072501}. Best is trial 25 with value: 0.08451317043238248.
[I 2025-10-17 17:11:20,462] A new study created in memory with name: no-name-a7b1dd24-2262-4902-a421-4d2bc5e48046
[I 2025-10-17 17:11:20,489] Trial 0 finished with value: 0.12895822722134 and parameters: {'sigma': 0.034956995532638625, 'lambd': 0.007768189772006189}. Best is trial 0 with value: 0.12895822722134.
[I 2025-10-17 17:11:20,518] Trial 1 finished with value: 0.10417172192386831 and parameters: {'sigma': 0.8152401289059421, 'lambd': 0.0033618843302610944}. Best is trial 1 with value: 0.10417172192386831.
[I 2025-10-17 17:11:20,541] Trial 2 finished with value: 0.06776287428027966 and parameters: {'sigma': 0.07788698658867288, 'lambd': 0.00020831610492576808}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,565] Trial 3 finished with value: 0.1077168798669381 and parameters: {'sigma': 1.490238958421132, 'lambd': 0.0005209680013121514}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,583] Trial 4 finished with value: 0.10025780251540026 and parameters: {'sigma': 0.053443767766548016, 'lambd': 0.00031806576470318437}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,603] Trial 5 finished with value: 0.11806944790498562 and parameters: {'sigma': 9.082728795422774, 'lambd': 0.006817214009927173}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,624] Trial 6 finished with value: 0.10196049032854135 and parameters: {'sigma': 0.8119003791779015, 'lambd': 0.7065028718618618}. Best is trial 2 with value: 0.06776287428027966.
Using standard kernel method
KS statistic: 0.1200, p-value: 0.1123
Best distance: 0.0845
Testing GMM sampling...
[I 2025-10-17 17:11:20,642] Trial 7 finished with value: 0.10202054230513408 and parameters: {'sigma': 2.589123879684797, 'lambd': 2.4336643995689135e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,660] Trial 8 finished with value: 0.1003501179857539 and parameters: {'sigma': 0.0552752083256954, 'lambd': 0.0002502895728108336}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,680] Trial 9 finished with value: 0.10809038073916517 and parameters: {'sigma': 8.422341568148855, 'lambd': 0.0003928486608969992}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,708] Trial 10 finished with value: 0.14732569462266382 and parameters: {'sigma': 0.012587046949933213, 'lambd': 0.1049139971196517}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,735] Trial 11 finished with value: 0.09386910122247859 and parameters: {'sigma': 0.1564532987232499, 'lambd': 1.3934647091395659e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,761] Trial 12 finished with value: 0.10598893547755553 and parameters: {'sigma': 0.20861387816271568, 'lambd': 2.202146100130993e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,785] Trial 13 finished with value: 0.0986328617664545 and parameters: {'sigma': 0.19677259757685694, 'lambd': 1.102207604133049e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,810] Trial 14 finished with value: 0.12630751082269925 and parameters: {'sigma': 0.12008043375193504, 'lambd': 7.786733521813783e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,845] Trial 15 finished with value: 0.11591375246403887 and parameters: {'sigma': 0.02070761676606431, 'lambd': 7.179804335285579e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,870] Trial 16 finished with value: 0.13059390144544086 and parameters: {'sigma': 0.0942105503135734, 'lambd': 0.0014212975686517322}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,893] Trial 17 finished with value: 0.08303117103400376 and parameters: {'sigma': 0.3851831407226602, 'lambd': 7.213512645076955e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,916] Trial 18 finished with value: 0.08223060133836718 and parameters: {'sigma': 0.4452446939335862, 'lambd': 7.139984488891664e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,936] Trial 19 finished with value: 0.11035227798863596 and parameters: {'sigma': 0.5443717555300995, 'lambd': 0.023567188884567946}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,962] Trial 20 finished with value: 0.10738579095353792 and parameters: {'sigma': 2.851906004987334, 'lambd': 0.0015137747155576971}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:20,986] Trial 21 finished with value: 0.08030228699654501 and parameters: {'sigma': 0.32713692510309056, 'lambd': 8.578804007864842e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,008] Trial 22 finished with value: 0.07975553397844479 and parameters: {'sigma': 0.3210493333712269, 'lambd': 0.0001050747360090953}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,034] Trial 23 finished with value: 0.07150706957137618 and parameters: {'sigma': 0.07879776085288524, 'lambd': 0.00011192326319081242}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,068] Trial 24 finished with value: 0.09076820400204753 and parameters: {'sigma': 0.06922051661132361, 'lambd': 0.0001718821605505469}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,104] Trial 25 finished with value: 0.08840740565757359 and parameters: {'sigma': 0.02829332027288815, 'lambd': 0.001387647511286572}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,128] Trial 26 finished with value: 0.0814600955186567 and parameters: {'sigma': 0.09395131319161984, 'lambd': 3.1704984474800014e-05}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,158] Trial 27 finished with value: 0.08646667647772127 and parameters: {'sigma': 0.01098210917121599, 'lambd': 0.0008173590538287275}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,184] Trial 28 finished with value: 0.0908550219064965 and parameters: {'sigma': 0.2182248010075849, 'lambd': 0.0001563781462644853}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,203] Trial 29 finished with value: 0.11379626346663022 and parameters: {'sigma': 0.03516192307078593, 'lambd': 0.013991486102733007}. Best is trial 2 with value: 0.06776287428027966.
[I 2025-10-17 17:11:21,323] A new study created in memory with name: no-name-6c4e24c5-1a41-4674-b186-c105fef2ceaf
Using standard kernel method
KS statistic: 0.0800, p-value: 0.5453
Best distance: 0.0678
Sampling Method Comparison:
BOOTSTRAP: KS=0.0500, p=0.9647, dist=0.0839
KDE: KS=0.1200, p=0.1123, dist=0.0845
GMM: KS=0.0800, p=0.5453, dist=0.0678
============================================================
EXAMPLE 5: Digits Dataset (MNIST)
============================================================
Target Distribution: PCA-transformed digits dataset (15D)
Sample size: 1797
[I 2025-10-17 17:11:21,567] Trial 0 finished with value: 0.0022246941588308575 and parameters: {'sigma': 3.034386762615776, 'lambd': 0.08547154108887714}. Best is trial 0 with value: 0.0022246941588308575.
[I 2025-10-17 17:11:21,760] Trial 1 finished with value: 0.0022246941600081375 and parameters: {'sigma': 2.6892900930634025, 'lambd': 0.0018697249698837633}. Best is trial 0 with value: 0.0022246941588308575.
[I 2025-10-17 17:11:21,968] Trial 2 finished with value: 0.0022246941588200805 and parameters: {'sigma': 0.889465150111555, 'lambd': 0.48565954959270946}. Best is trial 2 with value: 0.0022246941588200805.
[I 2025-10-17 17:11:22,178] Trial 3 finished with value: 0.0022246986066284187 and parameters: {'sigma': 8.068733682000948, 'lambd': 0.020064757947210014}. Best is trial 2 with value: 0.0022246941588200805.
[I 2025-10-17 17:11:22,399] Trial 4 finished with value: 0.0022246941588200527 and parameters: {'sigma': 0.06991870532527267, 'lambd': 0.03776240489033323}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:22,622] Trial 5 finished with value: 0.002224694159657839 and parameters: {'sigma': 2.6677164337394768, 'lambd': 0.17553543358987805}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:22,886] Trial 6 finished with value: 0.0022246941588214306 and parameters: {'sigma': 0.5670945028721163, 'lambd': 0.06280326347063207}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:23,120] Trial 7 finished with value: 0.002224694190579349 and parameters: {'sigma': 5.367524461468203, 'lambd': 0.019428842867155276}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:23,317] Trial 8 finished with value: 0.0022246941604723023 and parameters: {'sigma': 0.7421592164533201, 'lambd': 0.01683944803100256}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:23,518] Trial 9 finished with value: 0.0022246941604796506 and parameters: {'sigma': 0.01660105760939393, 'lambd': 1.3350914072279816e-05}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:23,708] Trial 10 finished with value: 0.0022246941589765387 and parameters: {'sigma': 0.04759508404840813, 'lambd': 0.0008718697897702893}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:24,039] Trial 11 finished with value: 0.002224694166250335 and parameters: {'sigma': 0.11470831084824455, 'lambd': 0.6223626873882091}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:24,423] Trial 12 finished with value: 0.002224694158825918 and parameters: {'sigma': 0.27224632936324333, 'lambd': 0.8530735370368501}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:24,711] Trial 13 finished with value: 0.002224694160014713 and parameters: {'sigma': 0.08769247963719867, 'lambd': 0.006130568855976838}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:25,119] Trial 14 finished with value: 0.0022246941588200614 and parameters: {'sigma': 0.018447926289387753, 'lambd': 0.00023877390564767826}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:25,520] Trial 15 finished with value: 0.002224694158826815 and parameters: {'sigma': 0.012186740347780034, 'lambd': 0.00022213301895163704}. Best is trial 4 with value: 0.0022246941588200527.
[I 2025-10-17 17:11:25,924] Trial 16 finished with value: 0.002224694158817377 and parameters: {'sigma': 0.03401792645922921, 'lambd': 9.898071446851201e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:26,265] Trial 17 finished with value: 0.0022246941588200684 and parameters: {'sigma': 0.03902077296757051, 'lambd': 3.4867190239840804e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:26,524] Trial 18 finished with value: 0.0022246941589003514 and parameters: {'sigma': 0.17781505377400345, 'lambd': 0.00014157303160355938}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:26,818] Trial 19 finished with value: 0.002224694158820057 and parameters: {'sigma': 0.05377121644486395, 'lambd': 0.0008192052604722724}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:27,174] Trial 20 finished with value: 0.0022246941588213547 and parameters: {'sigma': 0.030336430831989416, 'lambd': 0.003284072101731787}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:27,419] Trial 21 finished with value: 0.0022246941588312547 and parameters: {'sigma': 0.07373804292792707, 'lambd': 0.0008294642173975806}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:27,611] Trial 22 finished with value: 0.0022246941588200423 and parameters: {'sigma': 0.025744918564091994, 'lambd': 6.310002769749461e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:27,847] Trial 23 finished with value: 0.002224694158824855 and parameters: {'sigma': 0.02981165985544494, 'lambd': 8.337431157056064e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:28,087] Trial 24 finished with value: 0.0022246941588204847 and parameters: {'sigma': 0.0104728551992276, 'lambd': 1.6256994180625782e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:28,273] Trial 25 finished with value: 0.0022246941588193888 and parameters: {'sigma': 0.14013822845376228, 'lambd': 3.611108306657078e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:28,457] Trial 26 finished with value: 0.0022246941588729644 and parameters: {'sigma': 0.18268196344408066, 'lambd': 5.544768817791607e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:28,632] Trial 27 finished with value: 0.0022246941588200566 and parameters: {'sigma': 0.02341972624222852, 'lambd': 2.7157784465617063e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:28,815] Trial 28 finished with value: 0.0022246941588230477 and parameters: {'sigma': 0.1312416924179274, 'lambd': 0.00038189561481603016}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:28,991] Trial 29 finished with value: 0.0022246941593316817 and parameters: {'sigma': 0.3773644330842283, 'lambd': 9.73932863300472e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:29,185] Trial 30 finished with value: 0.0022246941590743233 and parameters: {'sigma': 0.038422938997017854, 'lambd': 3.921652037235994e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:29,429] Trial 31 finished with value: 0.0022246941588201117 and parameters: {'sigma': 0.058574346273035295, 'lambd': 0.07357418505880296}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:29,661] Trial 32 finished with value: 0.002224694159092144 and parameters: {'sigma': 0.09082863476857933, 'lambd': 1.1149717120966804e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:29,830] Trial 33 finished with value: 0.002224694160437738 and parameters: {'sigma': 0.19063855419325113, 'lambd': 0.00046572078087394936}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:30,030] Trial 34 finished with value: 0.0022246941591147667 and parameters: {'sigma': 0.01933940574950359, 'lambd': 0.007226103955815252}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:30,270] Trial 35 finished with value: 0.002224694158820147 and parameters: {'sigma': 0.062298029383583135, 'lambd': 0.235775711582688}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:30,500] Trial 36 finished with value: 0.002224694158842376 and parameters: {'sigma': 1.9188264123017775, 'lambd': 0.0022705665746547725}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:30,694] Trial 37 finished with value: 0.002224694158823318 and parameters: {'sigma': 0.40467281236659813, 'lambd': 0.037436367060527}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:30,873] Trial 38 finished with value: 0.002224694200054734 and parameters: {'sigma': 0.033795769292273146, 'lambd': 2.5016005314165526e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:31,079] Trial 39 finished with value: 0.002224694158822757 and parameters: {'sigma': 1.291594149988876, 'lambd': 0.18122950360054146}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:31,278] Trial 40 finished with value: 0.0022246941588200553 and parameters: {'sigma': 0.12617871268307465, 'lambd': 6.851256755320141e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:31,518] Trial 41 finished with value: 0.00222469415939099 and parameters: {'sigma': 0.12678691458145042, 'lambd': 6.967723330829376e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:31,718] Trial 42 finished with value: 0.0022246941588202943 and parameters: {'sigma': 0.25254074290814343, 'lambd': 0.00016226347792602138}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:31,953] Trial 43 finished with value: 0.0022246941588200697 and parameters: {'sigma': 0.08079159212986328, 'lambd': 5.760031826931511e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:32,146] Trial 44 finished with value: 0.0022246941588667025 and parameters: {'sigma': 0.11010432156733155, 'lambd': 2.3808723164489988e-05}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:32,413] Trial 45 finished with value: 0.0022246941588211382 and parameters: {'sigma': 0.015636713301948484, 'lambd': 0.00011499414842614425}. Best is trial 16 with value: 0.002224694158817377.
[I 2025-10-17 17:11:32,608] Trial 46 finished with value: 0.002224694158816916 and parameters: {'sigma': 0.5623977698929833, 'lambd': 0.00043037111468971186}. Best is trial 46 with value: 0.002224694158816916.
[I 2025-10-17 17:11:32,779] Trial 47 finished with value: 0.0022246941588248553 and parameters: {'sigma': 1.2677994873423124, 'lambd': 0.0005538439511840655}. Best is trial 46 with value: 0.002224694158816916.
[I 2025-10-17 17:11:32,994] Trial 48 finished with value: 0.002224694158822946 and parameters: {'sigma': 0.6731709461562156, 'lambd': 0.0002794778567212086}. Best is trial 46 with value: 0.002224694158816916.
[I 2025-10-17 17:11:33,174] Trial 49 finished with value: 0.002224695224673578 and parameters: {'sigma': 9.307515795379192, 'lambd': 0.0011759603836786502}. Best is trial 46 with value: 0.002224694158816916.
Using RFF with 100 components
Digits Dataset Results:
Best sigma: 0.562, lambda: 0.000, MMD: 0.002
============================================================
EXAMPLE 6: Olivetti Faces
============================================================
downloading Olivetti faces from https://ndownloader.figshare.com/files/5976027 to /root/scikit_learn_data
[I 2025-10-17 17:11:40,432] A new study created in memory with name: no-name-096355e6-8b00-4192-8312-5144f28a3d8a
[I 2025-10-17 17:11:40,459] Trial 0 finished with value: 0.010435174309232848 and parameters: {'sigma': 0.08575473865841494, 'lambd': 0.3448916285289377}. Best is trial 0 with value: 0.010435174309232848.
[I 2025-10-17 17:11:40,482] Trial 1 finished with value: 0.010396987276751084 and parameters: {'sigma': 4.251763014164457, 'lambd': 0.0012281541434627527}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,511] Trial 2 finished with value: 0.010450219218812317 and parameters: {'sigma': 1.7133407605319777, 'lambd': 0.031089295632681833}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,533] Trial 3 finished with value: 0.010464499360681586 and parameters: {'sigma': 3.247609947261713, 'lambd': 3.0321885123628217e-05}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,550] Trial 4 finished with value: 0.010435731488000251 and parameters: {'sigma': 0.2345259613053879, 'lambd': 0.000559694964639838}. Best is trial 1 with value: 0.010396987276751084.
Target Distribution: PCA-transformed Olivetti faces (15D)
Sample size: 400
[I 2025-10-17 17:11:40,571] Trial 5 finished with value: 0.010444051789784447 and parameters: {'sigma': 8.23622754906347, 'lambd': 0.00036567467073964386}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,602] Trial 6 finished with value: 0.010447883914246479 and parameters: {'sigma': 0.2515797545437043, 'lambd': 0.00018296030758637157}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,623] Trial 7 finished with value: 0.010452019752840585 and parameters: {'sigma': 0.07173852413967749, 'lambd': 0.0007523520408916687}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,645] Trial 8 finished with value: 0.010436178352782974 and parameters: {'sigma': 4.22225061445181, 'lambd': 0.015432428515163334}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,674] Trial 9 finished with value: 0.010422188281427469 and parameters: {'sigma': 5.5726772850495045, 'lambd': 0.0004563977330636227}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,717] Trial 10 finished with value: 0.010440371800466914 and parameters: {'sigma': 0.018046008238406196, 'lambd': 1.6238934343507206e-05}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,770] Trial 11 finished with value: 0.010453554354975799 and parameters: {'sigma': 1.281359288633284, 'lambd': 0.004652337521695351}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,833] Trial 12 finished with value: 0.010401552412228779 and parameters: {'sigma': 0.7854881139254786, 'lambd': 0.002620064932462582}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,888] Trial 13 finished with value: 0.010433883410589796 and parameters: {'sigma': 0.7958272984253381, 'lambd': 0.004834519553497132}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,913] Trial 14 finished with value: 0.010439233501419141 and parameters: {'sigma': 0.5796286551093658, 'lambd': 0.10959705622302783}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:40,992] Trial 15 finished with value: 0.010440590120051598 and parameters: {'sigma': 2.1442241678013136, 'lambd': 0.0031330468155277846}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,101] Trial 16 finished with value: 0.010436889250768404 and parameters: {'sigma': 0.5593065461984615, 'lambd': 9.075606666788495e-05}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,137] Trial 17 finished with value: 0.010442092982733277 and parameters: {'sigma': 0.10166481013065426, 'lambd': 0.002036746514637743}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,161] Trial 18 finished with value: 0.010508034467105846 and parameters: {'sigma': 9.874525894147546, 'lambd': 0.01750156250132312}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,189] Trial 19 finished with value: 0.010439074960179982 and parameters: {'sigma': 1.0627042674566747, 'lambd': 0.06395855981351582}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,222] Trial 20 finished with value: 0.01043385711060315 and parameters: {'sigma': 2.874794989015365, 'lambd': 0.00010390006742902309}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,245] Trial 21 finished with value: 0.01044790444325715 and parameters: {'sigma': 5.037640011505679, 'lambd': 0.0010031019025123064}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,279] Trial 22 finished with value: 0.010447604083123061 and parameters: {'sigma': 5.677105603062788, 'lambd': 0.0019113736990036467}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,305] Trial 23 finished with value: 0.0104349081151009 and parameters: {'sigma': 2.031766240260359, 'lambd': 0.00774511205826035}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,330] Trial 24 finished with value: 0.010442679787851957 and parameters: {'sigma': 0.45829806327463346, 'lambd': 0.00023731606934031718}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,357] Trial 25 finished with value: 0.010445269031566931 and parameters: {'sigma': 6.483581054982775, 'lambd': 0.0015137564412805958}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,384] Trial 26 finished with value: 0.010435846637064025 and parameters: {'sigma': 0.015280565709917874, 'lambd': 3.568880495988801e-05}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,421] Trial 27 finished with value: 0.01044770950724172 and parameters: {'sigma': 2.6909403880892695, 'lambd': 0.010225633558399694}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,457] Trial 28 finished with value: 0.010449011006768994 and parameters: {'sigma': 1.3733458606957063, 'lambd': 0.000554136046212649}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,487] Trial 29 finished with value: 0.010431252279812625 and parameters: {'sigma': 0.12238013946078506, 'lambd': 0.2516335734758182}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,524] Trial 30 finished with value: 0.01043721707511792 and parameters: {'sigma': 0.0413576081539471, 'lambd': 9.987982047900427e-05}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,552] Trial 31 finished with value: 0.010445326697029822 and parameters: {'sigma': 0.12902342585393034, 'lambd': 0.23889171339231788}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,578] Trial 32 finished with value: 0.010434102752783373 and parameters: {'sigma': 0.19271690001146902, 'lambd': 0.2684699065946425}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,599] Trial 33 finished with value: 0.010452925848488446 and parameters: {'sigma': 0.05317575395216421, 'lambd': 0.7783569372177462}. Best is trial 1 with value: 0.010396987276751084.
[I 2025-10-17 17:11:41,632] Trial 34 finished with value: 0.010394132679594987 and parameters: {'sigma': 0.026995750985447292, 'lambd': 0.0397536584244774}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,676] Trial 35 finished with value: 0.010441856247930295 and parameters: {'sigma': 0.024283613603171016, 'lambd': 0.033738539063730394}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,706] Trial 36 finished with value: 0.010434240480429537 and parameters: {'sigma': 0.37474848372493474, 'lambd': 0.0011850558047535656}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,733] Trial 37 finished with value: 0.010431494084163167 and parameters: {'sigma': 0.01095005905324633, 'lambd': 0.0004194657348118424}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,757] Trial 38 finished with value: 0.010460956981428963 and parameters: {'sigma': 3.759902300722846, 'lambd': 0.0002340159312791432}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,797] Trial 39 finished with value: 0.010514925344105377 and parameters: {'sigma': 7.269427417543369, 'lambd': 0.03517762196196378}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,826] Trial 40 finished with value: 0.010434414132081033 and parameters: {'sigma': 0.8383776739390186, 'lambd': 0.0037852317817186187}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,858] Trial 41 finished with value: 0.010439225873140086 and parameters: {'sigma': 0.03466255729584727, 'lambd': 0.5622451843823391}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,886] Trial 42 finished with value: 0.010431547476700151 and parameters: {'sigma': 0.11191533229171073, 'lambd': 0.14852781982635344}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,931] Trial 43 finished with value: 0.010437760783759222 and parameters: {'sigma': 0.29304410576073947, 'lambd': 0.06585795193628019}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,966] Trial 44 finished with value: 0.010447128853138707 and parameters: {'sigma': 0.1761579648540614, 'lambd': 0.0007114886734287087}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:41,992] Trial 45 finished with value: 0.010437070676912158 and parameters: {'sigma': 0.06317698294158555, 'lambd': 0.016917928131179486}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:42,017] Trial 46 finished with value: 0.010443381264997198 and parameters: {'sigma': 4.2736235594362135, 'lambd': 0.0026270957776364364}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:42,044] Trial 47 finished with value: 0.010402955193909982 and parameters: {'sigma': 1.5282541142329686, 'lambd': 0.0065234536327331005}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:42,078] Trial 48 finished with value: 0.010447562502403496 and parameters: {'sigma': 1.623582841688127, 'lambd': 0.0053930867400643805}. Best is trial 34 with value: 0.010394132679594987.
[I 2025-10-17 17:11:42,114] Trial 49 finished with value: 0.01043688379425865 and parameters: {'sigma': 0.7117082932402922, 'lambd': 0.008416896619186718}. Best is trial 34 with value: 0.010394132679594987.
Using RFF with 50 components
Olivetti Faces Results:
Best sigma: 0.027, lambda: 0.040, MMD: 0.010
============================================================
EXAMPLE 7: Fashion-MNIST
============================================================
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
[1m29515/29515[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
[1m26421880/26421880[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
[1m5148/5148[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
[1m4422102/4422102[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 0us/step
[I 2025-10-17 17:11:48,784] A new study created in memory with name: no-name-8db119a6-35a2-49b3-a3d1-12e0472aaabb
Target Distribution: PCA-transformed Fashion-MNIST (15D, subsampled)
Sample size: 5000
[I 2025-10-17 17:11:49,644] Trial 0 finished with value: 0.0019892355629470304 and parameters: {'sigma': 0.06946171483984556, 'lambd': 1.1725369530801314e-05}. Best is trial 0 with value: 0.0019892355629470304.
[I 2025-10-17 17:11:50,714] Trial 1 finished with value: 0.0019702610793439356 and parameters: {'sigma': 0.02272505476707354, 'lambd': 1.5754730460516142e-05}. Best is trial 1 with value: 0.0019702610793439356.
[I 2025-10-17 17:11:51,841] Trial 2 finished with value: 0.001989514022158744 and parameters: {'sigma': 0.028114742237218656, 'lambd': 0.0009307603249683455}. Best is trial 1 with value: 0.0019702610793439356.
[I 2025-10-17 17:11:52,771] Trial 3 finished with value: 0.001973252583294894 and parameters: {'sigma': 1.40580431451803, 'lambd': 0.0028856420300471834}. Best is trial 1 with value: 0.0019702610793439356.
[I 2025-10-17 17:11:53,526] Trial 4 finished with value: 0.0018773022155804731 and parameters: {'sigma': 0.1376705383897862, 'lambd': 0.6973118219875718}. Best is trial 4 with value: 0.0018773022155804731.
[I 2025-10-17 17:11:54,285] Trial 5 finished with value: 0.0018731660015017335 and parameters: {'sigma': 7.39106998903997, 'lambd': 6.27565645902574e-05}. Best is trial 5 with value: 0.0018731660015017335.
[I 2025-10-17 17:11:54,982] Trial 6 finished with value: 0.001985048317795435 and parameters: {'sigma': 1.0901548172124569, 'lambd': 7.965857353435175e-05}. Best is trial 5 with value: 0.0018731660015017335.
[I 2025-10-17 17:11:55,740] Trial 7 finished with value: 0.001982513553393475 and parameters: {'sigma': 0.022789118667394043, 'lambd': 0.004474395853512804}. Best is trial 5 with value: 0.0018731660015017335.
[I 2025-10-17 17:11:56,570] Trial 8 finished with value: 0.0019716712414303327 and parameters: {'sigma': 0.02596272593329039, 'lambd': 4.92277136803802e-05}. Best is trial 5 with value: 0.0018731660015017335.
[I 2025-10-17 17:11:57,398] Trial 9 finished with value: 0.001960767021038922 and parameters: {'sigma': 0.15525724234544244, 'lambd': 7.430033577500031e-05}. Best is trial 5 with value: 0.0018731660015017335.
[I 2025-10-17 17:11:58,239] Trial 10 finished with value: 0.0014793507566249933 and parameters: {'sigma': 9.117639887039616, 'lambd': 0.043217613167101744}. Best is trial 10 with value: 0.0014793507566249933.
[I 2025-10-17 17:11:59,028] Trial 11 finished with value: 0.0013878407121193533 and parameters: {'sigma': 9.492128792325992, 'lambd': 0.09336243679214411}. Best is trial 11 with value: 0.0013878407121193533.
[I 2025-10-17 17:11:59,808] Trial 12 finished with value: 0.0012810204657137088 and parameters: {'sigma': 9.738194318632576, 'lambd': 0.16494592118166912}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:00,657] Trial 13 finished with value: 0.0018927586239235608 and parameters: {'sigma': 2.5344523583164564, 'lambd': 0.4175736276179542}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:01,610] Trial 14 finished with value: 0.001897025807817745 and parameters: {'sigma': 3.158112631133682, 'lambd': 0.07246515094937574}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:03,475] Trial 15 finished with value: 0.0020135272898608165 and parameters: {'sigma': 0.5221437267862932, 'lambd': 0.06717174803386658}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:04,474] Trial 16 finished with value: 0.0018594707948543124 and parameters: {'sigma': 4.6588292167218315, 'lambd': 0.021130863340629694}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:05,779] Trial 17 finished with value: 0.0019614090778039776 and parameters: {'sigma': 0.5509081731758566, 'lambd': 0.23795346316040708}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:06,835] Trial 18 finished with value: 0.0019380179212026703 and parameters: {'sigma': 1.8842244445193719, 'lambd': 0.01667131383285827}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:07,515] Trial 19 finished with value: 0.001607707996818578 and parameters: {'sigma': 5.482595666961997, 'lambd': 0.16407746355950564}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:08,309] Trial 20 finished with value: 0.0019358883929473888 and parameters: {'sigma': 0.9019852744346644, 'lambd': 0.9832639160515017}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:09,113] Trial 21 finished with value: 0.0015611664049048923 and parameters: {'sigma': 9.334474358275688, 'lambd': 0.018894884129579785}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:09,923] Trial 22 finished with value: 0.001829313637646465 and parameters: {'sigma': 4.136331055975914, 'lambd': 0.10052416670989114}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:10,762] Trial 23 finished with value: 0.0016732588468057349 and parameters: {'sigma': 9.919800560249579, 'lambd': 0.006385292104556479}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:11,461] Trial 24 finished with value: 0.0018758695869781606 and parameters: {'sigma': 3.03767040736032, 'lambd': 0.03895925656872617}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:12,151] Trial 25 finished with value: 0.0019001465945362676 and parameters: {'sigma': 5.670537859845475, 'lambd': 0.0012319630765093871}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:12,861] Trial 26 finished with value: 0.0019268799871362285 and parameters: {'sigma': 0.012101029381927713, 'lambd': 0.16046304280677928}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:13,666] Trial 27 finished with value: 0.0019284133737639034 and parameters: {'sigma': 2.0551311458817247, 'lambd': 0.39649851351461846}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:14,420] Trial 28 finished with value: 0.001710034554445046 and parameters: {'sigma': 6.257217180311695, 'lambd': 0.03992916352638639}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:15,310] Trial 29 finished with value: 0.001872444439359557 and parameters: {'sigma': 3.629118962892809, 'lambd': 0.009268783531128078}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:16,102] Trial 30 finished with value: 0.0020163497759163127 and parameters: {'sigma': 0.300597011501817, 'lambd': 0.00038157649881761385}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:17,053] Trial 31 finished with value: 0.0015368357494719542 and parameters: {'sigma': 9.21084977900447, 'lambd': 0.02648947114752872}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:18,214] Trial 32 finished with value: 0.0017010484094551628 and parameters: {'sigma': 6.857208650757891, 'lambd': 0.03831528998706033}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:19,297] Trial 33 finished with value: 0.0017025343977046072 and parameters: {'sigma': 8.309657775299506, 'lambd': 0.011428601245222198}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:20,221] Trial 34 finished with value: 0.0017652731953977706 and parameters: {'sigma': 4.434092269449606, 'lambd': 0.10299067642565476}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:21,024] Trial 35 finished with value: 0.0017411870050461696 and parameters: {'sigma': 9.925779416030334, 'lambd': 0.0020407423323542413}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:21,715] Trial 36 finished with value: 0.0019528985222339187 and parameters: {'sigma': 0.04521047937328109, 'lambd': 0.408370884316286}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:22,493] Trial 37 finished with value: 0.0019594436991868 and parameters: {'sigma': 1.706948602497944, 'lambd': 0.03545115322520242}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:23,188] Trial 38 finished with value: 0.0019243263230261107 and parameters: {'sigma': 2.6878096214179528, 'lambd': 0.18465834357758582}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:23,875] Trial 39 finished with value: 0.0019761385666847518 and parameters: {'sigma': 0.980198423177681, 'lambd': 0.07477947057649174}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:24,557] Trial 40 finished with value: 0.001991593237422492 and parameters: {'sigma': 0.09851736704679352, 'lambd': 0.00034334955865135105}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:25,335] Trial 41 finished with value: 0.0014559032192252325 and parameters: {'sigma': 9.98864807637654, 'lambd': 0.023961143105579463}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:26,049] Trial 42 finished with value: 0.001709994760638889 and parameters: {'sigma': 6.740702432452856, 'lambd': 0.023172027419786564}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:26,781] Trial 43 finished with value: 0.001811446319828209 and parameters: {'sigma': 6.647520233772108, 'lambd': 0.005797009864829972}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:27,526] Trial 44 finished with value: 0.0016527830242910712 and parameters: {'sigma': 4.71102586739665, 'lambd': 0.26573718566238563}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:28,211] Trial 45 finished with value: 0.0015873377172766216 and parameters: {'sigma': 9.959416399110289, 'lambd': 0.010077289678790829}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:29,140] Trial 46 finished with value: 0.0019241300118093489 and parameters: {'sigma': 3.6267191091637003, 'lambd': 0.0029455297813174275}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:29,880] Trial 47 finished with value: 0.001537920259246175 and parameters: {'sigma': 7.066567258887439, 'lambd': 0.059219228224031265}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:30,858] Trial 48 finished with value: 0.001936861941320821 and parameters: {'sigma': 2.346524115527226, 'lambd': 0.10097414279514345}. Best is trial 12 with value: 0.0012810204657137088.
[I 2025-10-17 17:12:31,973] Trial 49 finished with value: 0.0019038140707764376 and parameters: {'sigma': 1.3197362693838952, 'lambd': 0.6363414187898893}. Best is trial 12 with value: 0.0012810204657137088.
Using RFF with 200 components
Fashion-MNIST Results:
Best sigma: 9.738, lambda: 0.165, MMD: 0.001
[I 2025-10-17 17:12:36,466] A new study created in memory with name: no-name-5c72157a-0f2d-457f-8170-64171fd87a63
[I 2025-10-17 17:12:36,565] Trial 0 finished with value: 0.00553569766506351 and parameters: {'sigma': 0.8460877586011375, 'lambd': 4.709165032932877e-05}. Best is trial 0 with value: 0.00553569766506351.
============================================================
EXAMPLE 8: Advanced Sampling Methods Comparison
============================================================
Comparing sampling methods on Fashion-MNIST...
Testing BOOTSTRAP sampling...
[I 2025-10-17 17:12:36,723] Trial 1 finished with value: 0.005509638711471382 and parameters: {'sigma': 0.14478590769189262, 'lambd': 0.6196548348377662}. Best is trial 1 with value: 0.005509638711471382.
[I 2025-10-17 17:12:36,821] Trial 2 finished with value: 0.0055321322710836385 and parameters: {'sigma': 0.2769139882838393, 'lambd': 0.00011247903709532683}. Best is trial 1 with value: 0.005509638711471382.
[I 2025-10-17 17:12:36,945] Trial 3 finished with value: 0.005401401174134694 and parameters: {'sigma': 0.10753643693509313, 'lambd': 0.8536164744141534}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,065] Trial 4 finished with value: 0.00549882856138778 and parameters: {'sigma': 3.86686406243945, 'lambd': 1.7172241932031487e-05}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,180] Trial 5 finished with value: 0.005535739625601262 and parameters: {'sigma': 0.18816013314617402, 'lambd': 0.2164279340068768}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,331] Trial 6 finished with value: 0.005469026960345116 and parameters: {'sigma': 0.32620613277980826, 'lambd': 2.6105033627519313e-05}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,458] Trial 7 finished with value: 0.005559284600610345 and parameters: {'sigma': 0.20367817690633153, 'lambd': 0.0069515511771439924}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,564] Trial 8 finished with value: 0.005492148588952955 and parameters: {'sigma': 0.06173457292575633, 'lambd': 0.5197030795580642}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,651] Trial 9 finished with value: 0.005539966578358715 and parameters: {'sigma': 1.2293632503402854, 'lambd': 0.005132088798932314}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,759] Trial 10 finished with value: 0.005521340083253729 and parameters: {'sigma': 0.010797092605158308, 'lambd': 0.03332860434586925}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:37,885] Trial 11 finished with value: 0.0055460791170889034 and parameters: {'sigma': 0.03204986680421774, 'lambd': 0.0002549316372087186}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,003] Trial 12 finished with value: 0.005517433601275061 and parameters: {'sigma': 1.1168370928094389, 'lambd': 0.0006951172174833457}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,134] Trial 13 finished with value: 0.005568358284339592 and parameters: {'sigma': 0.05014279408405909, 'lambd': 0.055774253823918415}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,246] Trial 14 finished with value: 0.005506408047416418 and parameters: {'sigma': 8.520856137042768, 'lambd': 0.001500026494658055}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,368] Trial 15 finished with value: 0.005511222408664484 and parameters: {'sigma': 0.6253100626979734, 'lambd': 1.4115939685122403e-05}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,463] Trial 16 finished with value: 0.005589581524695385 and parameters: {'sigma': 0.08858842107358524, 'lambd': 0.016136128956645714}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,587] Trial 17 finished with value: 0.005559239838292292 and parameters: {'sigma': 0.02444503100597354, 'lambd': 0.11717078426640247}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,674] Trial 18 finished with value: 0.005502502576419136 and parameters: {'sigma': 2.420408875099419, 'lambd': 0.0005584812576642319}. Best is trial 3 with value: 0.005401401174134694.
[I 2025-10-17 17:12:38,784] Trial 19 finished with value: 0.0055109032771257956 and parameters: {'sigma': 0.3882836682661641, 'lambd': 8.687751417748745e-05}. Best is trial 3 with value: 0.005401401174134694.
Using RFF with 100 components
[I 2025-10-17 17:12:39,113] A new study created in memory with name: no-name-af6be05f-72ae-48f8-b230-f35104dfb193
Best MMD: 0.0054
Energy distance: 0.0452
Current MMD: 0.0034
Testing KDE sampling...
[I 2025-10-17 17:12:42,721] Trial 0 finished with value: 0.005658769499816391 and parameters: {'sigma': 1.380467255278301, 'lambd': 3.31866815767531e-05}. Best is trial 0 with value: 0.005658769499816391.
[I 2025-10-17 17:12:47,274] Trial 1 finished with value: 0.005651414286277011 and parameters: {'sigma': 0.1034818414930744, 'lambd': 0.0002829179325931842}. Best is trial 1 with value: 0.005651414286277011.
[I 2025-10-17 17:12:50,921] Trial 2 finished with value: 0.005633985649330602 and parameters: {'sigma': 0.17764969068388775, 'lambd': 0.2862297609501407}. Best is trial 2 with value: 0.005633985649330602.
[I 2025-10-17 17:12:54,532] Trial 3 finished with value: 0.005649495177212006 and parameters: {'sigma': 0.012764194388169134, 'lambd': 0.0019287445133986416}. Best is trial 2 with value: 0.005633985649330602.
[I 2025-10-17 17:12:58,809] Trial 4 finished with value: 0.005643061551161458 and parameters: {'sigma': 2.122483243662381, 'lambd': 0.13284001778471444}. Best is trial 2 with value: 0.005633985649330602.
[I 2025-10-17 17:13:02,377] Trial 5 finished with value: 0.005656296901449886 and parameters: {'sigma': 1.6242171124934222, 'lambd': 0.03950247464015279}. Best is trial 2 with value: 0.005633985649330602.
[I 2025-10-17 17:13:06,052] Trial 6 finished with value: 0.005648690210064469 and parameters: {'sigma': 0.010054105629979196, 'lambd': 0.0010696250626137896}. Best is trial 2 with value: 0.005633985649330602.
[I 2025-10-17 17:13:10,352] Trial 7 finished with value: 0.005633042804987078 and parameters: {'sigma': 0.6280274306224791, 'lambd': 0.018085931470243875}. Best is trial 7 with value: 0.005633042804987078.
[I 2025-10-17 17:13:14,146] Trial 8 finished with value: 0.0056129821806538225 and parameters: {'sigma': 0.036822710620171985, 'lambd': 0.002715752616062836}. Best is trial 8 with value: 0.0056129821806538225.
[I 2025-10-17 17:13:17,681] Trial 9 finished with value: 0.005630913091217001 and parameters: {'sigma': 0.01686930040278382, 'lambd': 0.676834720966076}. Best is trial 8 with value: 0.0056129821806538225.
[I 2025-10-17 17:13:21,470] Trial 10 finished with value: 0.005655041183885723 and parameters: {'sigma': 0.0596156409229364, 'lambd': 3.620407210771079e-05}. Best is trial 8 with value: 0.0056129821806538225.
[I 2025-10-17 17:13:25,848] Trial 11 finished with value: 0.005653092421975471 and parameters: {'sigma': 0.03691241361516929, 'lambd': 0.010721804534624233}. Best is trial 8 with value: 0.0056129821806538225.
[I 2025-10-17 17:13:29,420] Trial 12 finished with value: 0.005395144808252892 and parameters: {'sigma': 8.568999733994703, 'lambd': 0.9084036519711657}. Best is trial 12 with value: 0.005395144808252892.
[I 2025-10-17 17:13:32,849] Trial 13 finished with value: 0.0056472251854840436 and parameters: {'sigma': 8.275377117604526, 'lambd': 0.0003793435521643158}. Best is trial 12 with value: 0.005395144808252892.
[I 2025-10-17 17:13:37,143] Trial 14 finished with value: 0.005628793022537269 and parameters: {'sigma': 4.916768664009718, 'lambd': 0.006096316548000802}. Best is trial 12 with value: 0.005395144808252892.
[I 2025-10-17 17:13:40,723] Trial 15 finished with value: 0.005643001870929179 and parameters: {'sigma': 0.3531879300337029, 'lambd': 0.07955500692518286}. Best is trial 12 with value: 0.005395144808252892.
[I 2025-10-17 17:13:44,494] Trial 16 finished with value: 0.005648789267993222 and parameters: {'sigma': 0.03268222695503872, 'lambd': 0.00015056409841733735}. Best is trial 12 with value: 0.005395144808252892.
[I 2025-10-17 17:13:48,743] Trial 17 finished with value: 0.005644687804291291 and parameters: {'sigma': 0.2727085341898026, 'lambd': 0.0037210685832827508}. Best is trial 12 with value: 0.005395144808252892.
[I 2025-10-17 17:13:53,104] Trial 18 finished with value: 0.005652515433235846 and parameters: {'sigma': 3.5771067989720704, 'lambd': 0.0007802415244630936}. Best is trial 12 with value: 0.005395144808252892.
[I 2025-10-17 17:13:56,637] Trial 19 finished with value: 0.0056480259133483 and parameters: {'sigma': 0.6707852721252372, 'lambd': 0.02799307859284754}. Best is trial 12 with value: 0.005395144808252892.
Using RFF with 100 components
[I 2025-10-17 17:14:01,101] A new study created in memory with name: no-name-ce50086f-5f22-4b5c-ba67-553c3f03098f
Best MMD: 0.0054
Energy distance: 0.0273
Current MMD: 0.0033
Testing GMM sampling...
[I 2025-10-17 17:14:01,428] Trial 0 finished with value: 0.005610397333872637 and parameters: {'sigma': 0.07280555116630144, 'lambd': 0.0012309102713446358}. Best is trial 0 with value: 0.005610397333872637.
[I 2025-10-17 17:14:01,696] Trial 1 finished with value: 0.0056035839727165415 and parameters: {'sigma': 3.162844495844304, 'lambd': 0.0020446159967166867}. Best is trial 1 with value: 0.0056035839727165415.
[I 2025-10-17 17:14:01,973] Trial 2 finished with value: 0.005613874472728539 and parameters: {'sigma': 0.044606341640329436, 'lambd': 5.911256706499439e-05}. Best is trial 1 with value: 0.0056035839727165415.
[I 2025-10-17 17:14:02,237] Trial 3 finished with value: 0.005596109545553306 and parameters: {'sigma': 0.17194990826192433, 'lambd': 0.003913730958511346}. Best is trial 3 with value: 0.005596109545553306.
[I 2025-10-17 17:14:02,498] Trial 4 finished with value: 0.005629639522832094 and parameters: {'sigma': 0.0856887563234124, 'lambd': 0.002271310626424931}. Best is trial 3 with value: 0.005596109545553306.
[I 2025-10-17 17:14:02,674] Trial 5 finished with value: 0.005623484644812446 and parameters: {'sigma': 0.035021367307924926, 'lambd': 0.26514591276506466}. Best is trial 3 with value: 0.005596109545553306.
[I 2025-10-17 17:14:02,940] Trial 6 finished with value: 0.0056150522397781745 and parameters: {'sigma': 0.08744193523381705, 'lambd': 9.25220170532846e-05}. Best is trial 3 with value: 0.005596109545553306.
[I 2025-10-17 17:14:03,085] Trial 7 finished with value: 0.00557640200939819 and parameters: {'sigma': 0.011002280636680253, 'lambd': 0.03263121416274191}. Best is trial 7 with value: 0.00557640200939819.
[I 2025-10-17 17:14:03,211] Trial 8 finished with value: 0.005619949758078718 and parameters: {'sigma': 2.6771723876682816, 'lambd': 1.0189431257801014e-05}. Best is trial 7 with value: 0.00557640200939819.
[I 2025-10-17 17:14:03,375] Trial 9 finished with value: 0.005620407244002331 and parameters: {'sigma': 0.0676024291017315, 'lambd': 0.0002727084877246502}. Best is trial 7 with value: 0.00557640200939819.
[I 2025-10-17 17:14:03,519] Trial 10 finished with value: 0.005619817943597596 and parameters: {'sigma': 0.7825415091133227, 'lambd': 0.0900147489497579}. Best is trial 7 with value: 0.00557640200939819.
[I 2025-10-17 17:14:03,721] Trial 11 finished with value: 0.005604591572310991 and parameters: {'sigma': 0.010150342980155434, 'lambd': 0.017121444818376148}. Best is trial 7 with value: 0.00557640200939819.
[I 2025-10-17 17:14:03,955] Trial 12 finished with value: 0.0056236327098506695 and parameters: {'sigma': 0.4414904063425065, 'lambd': 0.024887094783313253}. Best is trial 7 with value: 0.00557640200939819.
[I 2025-10-17 17:14:04,187] Trial 13 finished with value: 0.005475731758217264 and parameters: {'sigma': 9.332659232824437, 'lambd': 0.677775250132715}. Best is trial 13 with value: 0.005475731758217264.
[I 2025-10-17 17:14:04,314] Trial 14 finished with value: 0.005481190582833648 and parameters: {'sigma': 8.352026764652255, 'lambd': 0.6674063513102156}. Best is trial 13 with value: 0.005475731758217264.
[I 2025-10-17 17:14:04,509] Trial 15 finished with value: 0.005472998290923025 and parameters: {'sigma': 8.907311767116616, 'lambd': 0.9267586560980672}. Best is trial 15 with value: 0.005472998290923025.
[I 2025-10-17 17:14:04,710] Trial 16 finished with value: 0.00547682095777651 and parameters: {'sigma': 7.1786399692592555, 'lambd': 0.8212175741302802}. Best is trial 15 with value: 0.005472998290923025.
[I 2025-10-17 17:14:04,989] Trial 17 finished with value: 0.005604382310450571 and parameters: {'sigma': 1.5026300953541887, 'lambd': 0.15593225368282737}. Best is trial 15 with value: 0.005472998290923025.
[I 2025-10-17 17:14:05,187] Trial 18 finished with value: 0.0055362349336269484 and parameters: {'sigma': 4.304015788116848, 'lambd': 0.260550096892479}. Best is trial 15 with value: 0.005472998290923025.
[I 2025-10-17 17:14:05,437] Trial 19 finished with value: 0.005617675095359431 and parameters: {'sigma': 1.2164751789525714, 'lambd': 0.8929401849821599}. Best is trial 15 with value: 0.005472998290923025.
Using RFF with 100 components
Best MMD: 0.0055
Energy distance: 0.0429
Current MMD: 0.0034
Fashion-MNIST Sampling Method Comparison:
--------------------------------------------------
BOOTSTRAP | MMD: 0.0054 | Energy: 0.0452 | σ: 0.108 | λ: 0.854
KDE | MMD: 0.0054 | Energy: 0.0273 | σ: 8.569 | λ: 0.908
GMM | MMD: 0.0055 | Energy: 0.0429 | σ: 8.907 | λ: 0.927
============================================================
EXAMPLE 9: Statistical Tests on Image Datasets
============================================================
Statistical Tests for Digits:
----------------------------------------
Energy Distance: 0.071668
MMD: 0.001113
KS test p-values (first 5 dims): ['0.5432', '0.1117', '0.1644', '0.2692', '0.1525']
Min KS p-value: 0.1117
Average correlation difference: 0.0231
Statistical Tests for Olivetti:
----------------------------------------
Energy Distance: 0.042560
MMD: 0.005548
KS test p-values (first 5 dims): ['0.3222', '0.4680', '0.8134', '0.6405', '0.1314']
Min KS p-value: 0.1314
Average correlation difference: 0.0512
Statistical Tests for Fashion-MNIST:
----------------------------------------
Energy Distance: 0.005224
[I 2025-10-17 17:14:09,658] A new study created in memory with name: no-name-27e43835-4718-438b-8e26-699221c5e683
MMD: 0.000703
KS test p-values (first 5 dims): ['0.0174', '0.4355', '0.9229', '0.0197', '0.8897']
Min KS p-value: 0.0174
Average correlation difference: 0.0178
============================================================
SUMMARY: All Dataset Results
============================================================
Performance Summary:
--------------------------------------------------------------------------------
Dataset MMD Energy Dist Min KS p-val Avg Corr Diff
--------------------------------------------------------------------------------
Digits 0.001113 0.071668 0.1117 0.0231
Olivetti 0.005548 0.042560 0.1314 0.0512
Fashion-MNIST 0.000703 0.005224 0.0174 0.0178
============================================================
EXAMPLE 10: Quality Assessment with Different PCA Dimensions
============================================================
Testing different PCA dimensions on Fashion-MNIST...
PCA with 5 components:
[I 2025-10-17 17:14:09,882] Trial 0 finished with value: 0.007395913168342295 and parameters: {'sigma': 0.8820313607703371, 'lambd': 0.06253790197703084}. Best is trial 0 with value: 0.007395913168342295.
[I 2025-10-17 17:14:10,087] Trial 1 finished with value: 0.007749204063147156 and parameters: {'sigma': 0.8620350071972787, 'lambd': 2.6800483822530356e-05}. Best is trial 0 with value: 0.007395913168342295.
[I 2025-10-17 17:14:10,263] Trial 2 finished with value: 0.007252565910786242 and parameters: {'sigma': 0.023846568931949773, 'lambd': 1.1465202899474279e-05}. Best is trial 2 with value: 0.007252565910786242.
[I 2025-10-17 17:14:10,479] Trial 3 finished with value: 0.0058625509097887 and parameters: {'sigma': 3.195064544953249, 'lambd': 0.0001615568821195399}. Best is trial 3 with value: 0.0058625509097887.
[I 2025-10-17 17:14:10,694] Trial 4 finished with value: 0.004217487037452004 and parameters: {'sigma': 2.6778072212636874, 'lambd': 0.12490791044712994}. Best is trial 4 with value: 0.004217487037452004.
[I 2025-10-17 17:14:10,905] Trial 5 finished with value: 0.007861045792178228 and parameters: {'sigma': 0.10528291591651531, 'lambd': 0.0006171244286537342}. Best is trial 4 with value: 0.004217487037452004.
[I 2025-10-17 17:14:11,120] Trial 6 finished with value: 0.00796508328670374 and parameters: {'sigma': 0.6633119026632547, 'lambd': 0.0014583629803455777}. Best is trial 4 with value: 0.004217487037452004.
[I 2025-10-17 17:14:11,333] Trial 7 finished with value: 0.007542610276465331 and parameters: {'sigma': 0.025909318891564753, 'lambd': 0.02733199066719973}. Best is trial 4 with value: 0.004217487037452004.
[I 2025-10-17 17:14:11,481] Trial 8 finished with value: 0.007763520772336841 and parameters: {'sigma': 0.1028858964151467, 'lambd': 0.0003548116813234751}. Best is trial 4 with value: 0.004217487037452004.
[I 2025-10-17 17:14:11,697] Trial 9 finished with value: 0.007931592513185898 and parameters: {'sigma': 0.024647590405361568, 'lambd': 0.0007808648127586882}. Best is trial 4 with value: 0.004217487037452004.
[I 2025-10-17 17:14:11,881] Trial 10 finished with value: 0.0029512509871078597 and parameters: {'sigma': 9.305207442855584, 'lambd': 0.8421297720085298}. Best is trial 10 with value: 0.0029512509871078597.
[I 2025-10-17 17:14:12,095] Trial 11 finished with value: 0.0031186270927277687 and parameters: {'sigma': 8.777256904578405, 'lambd': 0.8276065382899112}. Best is trial 10 with value: 0.0029512509871078597.
[I 2025-10-17 17:14:12,267] Trial 12 finished with value: 0.003011164650953569 and parameters: {'sigma': 9.2655229393007, 'lambd': 0.9670013542894392}. Best is trial 10 with value: 0.0029512509871078597.
[I 2025-10-17 17:14:12,519] Trial 13 finished with value: 0.002876934337141066 and parameters: {'sigma': 9.363685776775727, 'lambd': 0.9010782687757858}. Best is trial 13 with value: 0.002876934337141066.
[I 2025-10-17 17:14:12,756] Trial 14 finished with value: 0.004816321382929627 and parameters: {'sigma': 3.236875355914408, 'lambd': 0.007506616800751803}. Best is trial 13 with value: 0.002876934337141066.
[I 2025-10-17 17:14:13,099] Trial 15 finished with value: 0.0033731107384530126 and parameters: {'sigma': 4.8663451120678465, 'lambd': 0.23544181344574067}. Best is trial 13 with value: 0.002876934337141066.
[I 2025-10-17 17:14:13,384] Trial 16 finished with value: 0.006208648202061439 and parameters: {'sigma': 1.7299896001541488, 'lambd': 0.01379284749860457}. Best is trial 13 with value: 0.002876934337141066.
[I 2025-10-17 17:14:13,757] Trial 17 finished with value: 0.008024009312408636 and parameters: {'sigma': 0.21725067636737497, 'lambd': 0.2687278008549822}. Best is trial 13 with value: 0.002876934337141066.
[I 2025-10-17 17:14:14,106] Trial 18 finished with value: 0.0033401188386670104 and parameters: {'sigma': 9.661895902611315, 'lambd': 0.0042217753524644306}. Best is trial 13 with value: 0.002876934337141066.
[I 2025-10-17 17:14:14,407] Trial 19 finished with value: 0.006188176782675978 and parameters: {'sigma': 1.628450682232627, 'lambd': 0.05001303664821358}. Best is trial 13 with value: 0.002876934337141066.
Using RFF with 150 components
Explained variance: 0.618
Best MMD: 0.0029
Current MMD: 0.0009
PCA with 10 components:
[I 2025-10-17 17:14:16,063] A new study created in memory with name: no-name-fc08bedc-8ba8-48b5-a38a-b87882b2fa71
[I 2025-10-17 17:14:16,206] Trial 0 finished with value: 0.004597442403194464 and parameters: {'sigma': 0.23959507950146675, 'lambd': 0.0006931100400958058}. Best is trial 0 with value: 0.004597442403194464.
[I 2025-10-17 17:14:16,360] Trial 1 finished with value: 0.004652955557853788 and parameters: {'sigma': 0.010329310029977284, 'lambd': 0.0002887026648741285}. Best is trial 0 with value: 0.004597442403194464.
[I 2025-10-17 17:14:16,531] Trial 2 finished with value: 0.004438723315533959 and parameters: {'sigma': 2.212946010752523, 'lambd': 0.00016669801196031274}. Best is trial 2 with value: 0.004438723315533959.
[I 2025-10-17 17:14:16,709] Trial 3 finished with value: 0.004378271170153425 and parameters: {'sigma': 0.268336989394594, 'lambd': 0.5441705173492666}. Best is trial 3 with value: 0.004378271170153425.
[I 2025-10-17 17:14:16,914] Trial 4 finished with value: 0.004483456608362379 and parameters: {'sigma': 0.3123600562038798, 'lambd': 0.0046303341397805455}. Best is trial 3 with value: 0.004378271170153425.
[I 2025-10-17 17:14:17,091] Trial 5 finished with value: 0.004254761414422766 and parameters: {'sigma': 2.52047145232276, 'lambd': 0.19476342506380415}. Best is trial 5 with value: 0.004254761414422766.
[I 2025-10-17 17:14:17,269] Trial 6 finished with value: 0.004486804966114798 and parameters: {'sigma': 0.23901513612253464, 'lambd': 0.167456860816161}. Best is trial 5 with value: 0.004254761414422766.
[I 2025-10-17 17:14:17,458] Trial 7 finished with value: 0.004603441313264692 and parameters: {'sigma': 0.08417006970026696, 'lambd': 3.239954531397513e-05}. Best is trial 5 with value: 0.004254761414422766.
[I 2025-10-17 17:14:17,634] Trial 8 finished with value: 0.004659364957668848 and parameters: {'sigma': 0.2174689292316603, 'lambd': 0.0003949806077984321}. Best is trial 5 with value: 0.004254761414422766.
[I 2025-10-17 17:14:17,852] Trial 9 finished with value: 0.004643056589199697 and parameters: {'sigma': 0.6271770651953724, 'lambd': 0.025213654037282863}. Best is trial 5 with value: 0.004254761414422766.
[I 2025-10-17 17:14:18,005] Trial 10 finished with value: 0.0032252088116024235 and parameters: {'sigma': 9.462757567619906, 'lambd': 0.033666766574878264}. Best is trial 10 with value: 0.0032252088116024235.
[I 2025-10-17 17:14:18,163] Trial 11 finished with value: 0.0032986095730336666 and parameters: {'sigma': 8.64000391983197, 'lambd': 0.03583283987925894}. Best is trial 10 with value: 0.0032252088116024235.
[I 2025-10-17 17:14:18,421] Trial 12 finished with value: 0.0034537074116932783 and parameters: {'sigma': 8.9128629585144, 'lambd': 0.01201121087106977}. Best is trial 10 with value: 0.0032252088116024235.
[I 2025-10-17 17:14:18,672] Trial 13 finished with value: 0.0032685534732815455 and parameters: {'sigma': 8.914381481379705, 'lambd': 0.05039857372290846}. Best is trial 10 with value: 0.0032252088116024235.
[I 2025-10-17 17:14:18,811] Trial 14 finished with value: 0.004213604587147527 and parameters: {'sigma': 2.7478206095023796, 'lambd': 0.07117303526804912}. Best is trial 10 with value: 0.0032252088116024235.
[I 2025-10-17 17:14:19,044] Trial 15 finished with value: 0.004587269732908544 and parameters: {'sigma': 1.2553293086331168, 'lambd': 0.0037601216362659626}. Best is trial 10 with value: 0.0032252088116024235.
[I 2025-10-17 17:14:19,275] Trial 16 finished with value: 0.0031441487082925464 and parameters: {'sigma': 4.867057106103801, 'lambd': 0.6951790361819624}. Best is trial 16 with value: 0.0031441487082925464.
[I 2025-10-17 17:14:19,516] Trial 17 finished with value: 0.004467220477651881 and parameters: {'sigma': 0.037311307038347834, 'lambd': 0.7945345215021298}. Best is trial 16 with value: 0.0031441487082925464.
[I 2025-10-17 17:14:19,732] Trial 18 finished with value: 0.003298987179630824 and parameters: {'sigma': 4.670700610744778, 'lambd': 0.2314728912900029}. Best is trial 16 with value: 0.0031441487082925464.
[I 2025-10-17 17:14:19,937] Trial 19 finished with value: 0.004671499210053675 and parameters: {'sigma': 0.9065174997335304, 'lambd': 0.010535679370338748}. Best is trial 16 with value: 0.0031441487082925464.
Using RFF with 150 components
Explained variance: 0.719
Best MMD: 0.0031
Current MMD: 0.0016
PCA with 15 components:
[I 2025-10-17 17:14:21,366] A new study created in memory with name: no-name-96b9463f-7856-4ada-bdf2-3d5cd31102c4
[I 2025-10-17 17:14:21,599] Trial 0 finished with value: 0.003262283712436921 and parameters: {'sigma': 0.04194886858261683, 'lambd': 2.8996611541204417e-05}. Best is trial 0 with value: 0.003262283712436921.
[I 2025-10-17 17:14:21,736] Trial 1 finished with value: 0.0030744225374605607 and parameters: {'sigma': 2.658143221420064, 'lambd': 0.5325799117944284}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:21,908] Trial 2 finished with value: 0.0032388127299949484 and parameters: {'sigma': 0.39200164097099094, 'lambd': 0.01828599731003998}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:22,143] Trial 3 finished with value: 0.0032649555411272714 and parameters: {'sigma': 0.023800645626366728, 'lambd': 0.00023898833968547144}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:22,325] Trial 4 finished with value: 0.003212042290103858 and parameters: {'sigma': 5.136763400313113, 'lambd': 0.002437689503381915}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:22,569] Trial 5 finished with value: 0.0032552951435582582 and parameters: {'sigma': 0.34073132962108593, 'lambd': 0.00017663937070822012}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:22,810] Trial 6 finished with value: 0.003245886325487281 and parameters: {'sigma': 0.11593393537037143, 'lambd': 0.00010872705026073396}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:22,966] Trial 7 finished with value: 0.003190789828918072 and parameters: {'sigma': 0.024969229956203234, 'lambd': 0.6662281348556616}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:23,141] Trial 8 finished with value: 0.0032598378365531503 and parameters: {'sigma': 0.030528353713654595, 'lambd': 0.008800485666801049}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:23,392] Trial 9 finished with value: 0.0032267242747699787 and parameters: {'sigma': 0.2730541663935448, 'lambd': 8.960336127490481e-05}. Best is trial 1 with value: 0.0030744225374605607.
[I 2025-10-17 17:14:23,613] Trial 10 finished with value: 0.0026609638626353977 and parameters: {'sigma': 5.762702513486472, 'lambd': 0.8051733424863858}. Best is trial 10 with value: 0.0026609638626353977.
[I 2025-10-17 17:14:23,767] Trial 11 finished with value: 0.002631854586463701 and parameters: {'sigma': 8.169357232510995, 'lambd': 0.757765469826795}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:24,010] Trial 12 finished with value: 0.0027780034826694914 and parameters: {'sigma': 8.918759312115615, 'lambd': 0.099292361578671}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:24,167] Trial 13 finished with value: 0.0032480629034076967 and parameters: {'sigma': 1.6285122961168212, 'lambd': 0.08550251898978017}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:24,386] Trial 14 finished with value: 0.0032871198235389174 and parameters: {'sigma': 1.2217759932990329, 'lambd': 0.13678777433347997}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:24,616] Trial 15 finished with value: 0.0027231142522288953 and parameters: {'sigma': 8.470417204455702, 'lambd': 0.816513255505266}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:24,840] Trial 16 finished with value: 0.0032417396015410028 and parameters: {'sigma': 2.807721040446678, 'lambd': 0.0013707845174766925}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:25,008] Trial 17 finished with value: 0.003269505077665167 and parameters: {'sigma': 0.7418091674875817, 'lambd': 0.020988565322234008}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:25,211] Trial 18 finished with value: 0.0030869373225207147 and parameters: {'sigma': 3.8070709578046102, 'lambd': 0.13848784102302195}. Best is trial 11 with value: 0.002631854586463701.
[I 2025-10-17 17:14:25,386] Trial 19 finished with value: 0.003242618513917286 and parameters: {'sigma': 0.7894412554812702, 'lambd': 0.25333377310285465}. Best is trial 11 with value: 0.002631854586463701.
Using RFF with 150 components
Explained variance: 0.760
Best MMD: 0.0026
Current MMD: 0.0012
PCA with 20 components:
[I 2025-10-17 17:14:27,118] A new study created in memory with name: no-name-78a78fc0-b93d-4777-b90f-37c9117b3ea8
[I 2025-10-17 17:14:27,473] Trial 0 finished with value: 0.0028507917571380425 and parameters: {'sigma': 0.01701389258172007, 'lambd': 0.754646569848943}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:27,785] Trial 1 finished with value: 0.0029048926954787866 and parameters: {'sigma': 0.3481559074036468, 'lambd': 0.001040095810717479}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:28,184] Trial 2 finished with value: 0.0028940520291561383 and parameters: {'sigma': 0.040012140597401005, 'lambd': 0.010981390966425301}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:28,460] Trial 3 finished with value: 0.0028975069844195344 and parameters: {'sigma': 0.013275452331229294, 'lambd': 0.00012939116404386925}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:28,778] Trial 4 finished with value: 0.0028991139681298415 and parameters: {'sigma': 0.013381214463375363, 'lambd': 0.0012355145417439757}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:29,031] Trial 5 finished with value: 0.0029042217564676205 and parameters: {'sigma': 1.596893729969738, 'lambd': 0.34927966926351545}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:29,384] Trial 6 finished with value: 0.0028898311322900798 and parameters: {'sigma': 0.05100658911843875, 'lambd': 0.012655006692945238}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:29,627] Trial 7 finished with value: 0.002906325512808648 and parameters: {'sigma': 2.1515525697051063, 'lambd': 5.805310343511277e-05}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:29,853] Trial 8 finished with value: 0.002861021381940424 and parameters: {'sigma': 0.5631149033592096, 'lambd': 0.928548282279497}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:30,082] Trial 9 finished with value: 0.0029012119351557466 and parameters: {'sigma': 0.11327482404508064, 'lambd': 0.03724589041036686}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:30,332] Trial 10 finished with value: 0.00289831007516994 and parameters: {'sigma': 0.13346263679148615, 'lambd': 0.14306901222507976}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:30,569] Trial 11 finished with value: 0.002880034958577477 and parameters: {'sigma': 0.61689835874623, 'lambd': 0.8756050986563503}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:30,827] Trial 12 finished with value: 0.002903262909530305 and parameters: {'sigma': 0.9076691767726783, 'lambd': 0.15870515907398186}. Best is trial 0 with value: 0.0028507917571380425.
[I 2025-10-17 17:14:31,066] Trial 13 finished with value: 0.0026422984355517314 and parameters: {'sigma': 9.69010864712242, 'lambd': 0.9513408894117135}. Best is trial 13 with value: 0.0026422984355517314.
[I 2025-10-17 17:14:31,269] Trial 14 finished with value: 0.0029033401630111054 and parameters: {'sigma': 0.14577631933105503, 'lambd': 0.07282894400266589}. Best is trial 13 with value: 0.0026422984355517314.
[I 2025-10-17 17:14:31,455] Trial 15 finished with value: 0.0028656799956336522 and parameters: {'sigma': 4.27714315099672, 'lambd': 0.020888406413039337}. Best is trial 13 with value: 0.0026422984355517314.
[I 2025-10-17 17:14:31,615] Trial 16 finished with value: 0.0028932148688457105 and parameters: {'sigma': 8.464274193702044, 'lambd': 1.709117145572373e-05}. Best is trial 13 with value: 0.0026422984355517314.
[I 2025-10-17 17:14:31,876] Trial 17 finished with value: 0.002845913520536925 and parameters: {'sigma': 8.844837434317297, 'lambd': 0.003391826517101554}. Best is trial 13 with value: 0.0026422984355517314.
[I 2025-10-17 17:14:32,080] Trial 18 finished with value: 0.002873564744579124 and parameters: {'sigma': 5.576485608488262, 'lambd': 0.0022365463091387964}. Best is trial 13 with value: 0.0026422984355517314.
[I 2025-10-17 17:14:32,302] Trial 19 finished with value: 0.0028987436288253976 and parameters: {'sigma': 2.929312329284539, 'lambd': 0.00022810309912462944}. Best is trial 13 with value: 0.0026422984355517314.
Using RFF with 150 components
Explained variance: 0.786
Best MMD: 0.0026
Current MMD: 0.0012
PCA Dimension Comparison:
--------------------------------------------------
Components Explained Var Best MMD Current MMD Energy Dist
--------------------------------------------------
5 0.618 0.0029 0.0009 0.0062
10 0.719 0.0031 0.0016 0.0122
15 0.760 0.0026 0.0012 0.0107
20 0.786 0.0026 0.0012 0.0077
============================================================
ALL EXAMPLES COMPLETED SUCCESSFULLY!
============================================================
AC.PA.Close | AI.PA.Close | AIR.PA.Close | ATO.PA.Close | BNP.PA.Close | CAP.PA.Close | CS.PA.Close | ENGI.PA.Close | GLE.PA.Close | KER.PA.Close | |
---|---|---|---|---|---|---|---|---|---|---|
2024-04-24 | 0.028883 | -0.023468 | -0.003077 | 0.026478 | -0.004714 | 0.005854 | -0.019373 | 0.004361 | -0.004342 | -0.071147 |
2024-04-25 | -0.010734 | -0.013631 | -0.023073 | -0.051293 | 0.009259 | -0.022130 | -0.013226 | -0.000311 | -0.007345 | 0.003520 |
2024-04-26 | 0.013813 | 0.008460 | -0.009253 | 0.009214 | -0.019946 | 0.009896 | 0.001478 | 0.001243 | 0.009518 | 0.032021 |
2024-04-29 | -0.011896 | -0.004221 | -0.007413 | 0.175485 | 0.010540 | 0.011748 | 0.009994 | 0.009274 | 0.009819 | -0.006829 |
2024-04-30 | -0.011313 | -0.002824 | -0.007856 | -0.116465 | -0.001626 | -0.037684 | -0.052541 | 0.001230 | -0.007651 | -0.016976 |
AC.PA.Close | AI.PA.Close | AIR.PA.Close | ATO.PA.Close | BNP.PA.Close | CAP.PA.Close | CS.PA.Close | ENGI.PA.Close | GLE.PA.Close | KER.PA.Close | |
---|---|---|---|---|---|---|---|---|---|---|
2025-08-20 | -0.011993 | -0.006674 | 0.002460 | -0.019722 | -0.000911 | -0.021182 | -0.002761 | -0.006199 | 0.007999 | -0.025209 |
2025-08-21 | -0.009031 | 0.000454 | 0.016286 | -0.053609 | 0.002859 | -0.008683 | -0.000251 | -0.004249 | 0.009063 | 0.002833 |
2025-08-22 | -0.021231 | -0.007973 | -0.015727 | -0.033652 | -0.014511 | -0.019288 | -0.014687 | -0.014870 | -0.013245 | 0.037579 |
2025-08-25 | -0.003909 | 0.004791 | 0.030454 | -0.062625 | 0.003287 | 0.030027 | 0.003311 | 0.012312 | 0.006077 | -0.009052 |
2025-08-26 | 0.004884 | 0.002614 | 0.011627 | 0.053213 | 0.017822 | 0.003691 | 0.012131 | 0.003976 | 0.023575 | -0.016202 |
[I 2025-10-17 17:14:33,260] A new study created in memory with name: no-name-d37f9ab0-e289-4822-895f-385925469b7e
[I 2025-10-17 17:14:33,294] Trial 0 finished with value: 0.0007943400151759761 and parameters: {'sigma': 5.625779360906917, 'lambd': 0.0131744015527339}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,329] Trial 1 finished with value: 0.0027987220636565002 and parameters: {'sigma': 0.7161417827371748, 'lambd': 8.644655305256373e-05}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,363] Trial 2 finished with value: 0.0013932879284475064 and parameters: {'sigma': 0.4555931270421259, 'lambd': 9.340513011515643e-05}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,398] Trial 3 finished with value: 0.0020673461587394915 and parameters: {'sigma': 5.64540023244463, 'lambd': 7.334907642778781e-05}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,431] Trial 4 finished with value: 0.0021189663398144543 and parameters: {'sigma': 1.233043503059137, 'lambd': 0.11812225321262308}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,469] Trial 5 finished with value: 0.0036006030161266356 and parameters: {'sigma': 0.0446876580552351, 'lambd': 0.014736710283921805}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,506] Trial 6 finished with value: 0.0027647592501125473 and parameters: {'sigma': 1.254798196940215, 'lambd': 0.0007680149945928696}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,543] Trial 7 finished with value: 0.003968947465641026 and parameters: {'sigma': 0.5008369636523282, 'lambd': 0.0010256434648317635}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,584] Trial 8 finished with value: 0.002038373063199206 and parameters: {'sigma': 0.044855098704406265, 'lambd': 7.241927826511569e-05}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,622] Trial 9 finished with value: 0.0017935939915683097 and parameters: {'sigma': 2.0154327653679247, 'lambd': 0.0003715739836055347}. Best is trial 0 with value: 0.0007943400151759761.
[I 2025-10-17 17:14:33,647] Trial 10 finished with value: 0.0006797890226231118 and parameters: {'sigma': 8.144102791916099, 'lambd': 0.5282235280573779}. Best is trial 10 with value: 0.0006797890226231118.
[I 2025-10-17 17:14:33,672] Trial 11 finished with value: 0.00026594387919520734 and parameters: {'sigma': 9.356466445560258, 'lambd': 0.43103189078543414}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,694] Trial 12 finished with value: 0.0007044341871582649 and parameters: {'sigma': 8.87294381873665, 'lambd': 0.6811668708461237}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,722] Trial 13 finished with value: 0.0007416978185643686 and parameters: {'sigma': 0.014743516696234237, 'lambd': 0.9434721198892767}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,779] Trial 14 finished with value: 0.001864877152997657 and parameters: {'sigma': 2.941469825948283, 'lambd': 0.10762976122047574}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,821] Trial 15 finished with value: 0.003182176975237372 and parameters: {'sigma': 0.16111960468586803, 'lambd': 0.11807961736592867}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,846] Trial 16 finished with value: 0.0021474959328093846 and parameters: {'sigma': 9.954135386873839, 'lambd': 1.2676794558336279e-05}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,868] Trial 17 finished with value: 0.0024022754105550437 and parameters: {'sigma': 0.15973867307373435, 'lambd': 0.021329041365881582}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,914] Trial 18 finished with value: 0.0007947120267768337 and parameters: {'sigma': 3.327448691197009, 'lambd': 0.30570223410128056}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,949] Trial 19 finished with value: 0.0017886755983256286 and parameters: {'sigma': 4.1301230617510685, 'lambd': 0.04390126032480344}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:33,987] Trial 20 finished with value: 0.003474285817205436 and parameters: {'sigma': 1.3324133149688133, 'lambd': 0.00619771708779163}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:34,014] Trial 21 finished with value: 0.0005130545452709523 and parameters: {'sigma': 9.875383834339798, 'lambd': 0.727751285700473}. Best is trial 11 with value: 0.00026594387919520734.
[I 2025-10-17 17:14:34,046] Trial 22 finished with value: 0.00020958678078697446 and parameters: {'sigma': 9.294395566333224, 'lambd': 0.3488628555837875}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,072] Trial 23 finished with value: 0.0011136555294379846 and parameters: {'sigma': 3.169481450868823, 'lambd': 0.2672943210184916}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,099] Trial 24 finished with value: 0.0012802216956599999 and parameters: {'sigma': 5.771465918932082, 'lambd': 0.24634610180575106}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,124] Trial 25 finished with value: 0.0018012690951030308 and parameters: {'sigma': 2.0616214192182576, 'lambd': 0.06839475122875349}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,151] Trial 26 finished with value: 0.000700089366824308 and parameters: {'sigma': 9.143424193954292, 'lambd': 0.37046700862133985}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,179] Trial 27 finished with value: 0.0011682158814763088 and parameters: {'sigma': 0.20875190377905847, 'lambd': 0.9833796031870473}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,206] Trial 28 finished with value: 0.0020034144219209793 and parameters: {'sigma': 5.000320119099681, 'lambd': 0.03306131483114492}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,237] Trial 29 finished with value: 0.0017010871411755613 and parameters: {'sigma': 5.9376388706747845, 'lambd': 0.008946998417558423}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,278] Trial 30 finished with value: 0.0018079320276713773 and parameters: {'sigma': 2.220963542002852, 'lambd': 0.003476403669251675}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,308] Trial 31 finished with value: 0.0005260759296796813 and parameters: {'sigma': 9.894906802186128, 'lambd': 0.3209017968530076}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,332] Trial 32 finished with value: 0.000442124073658956 and parameters: {'sigma': 6.517102913879885, 'lambd': 0.16759356159663055}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,359] Trial 33 finished with value: 0.0005617168847249498 and parameters: {'sigma': 5.831921436221848, 'lambd': 0.16388594015967792}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,388] Trial 34 finished with value: 0.0010410004685130758 and parameters: {'sigma': 4.267361966935676, 'lambd': 0.0717990111487866}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,423] Trial 35 finished with value: 0.0015249838606530286 and parameters: {'sigma': 0.743404589070603, 'lambd': 0.1718073360438499}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,457] Trial 36 finished with value: 0.000991324183079012 and parameters: {'sigma': 6.613062306658863, 'lambd': 0.5370278093766302}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,492] Trial 37 finished with value: 0.002015164956569171 and parameters: {'sigma': 3.918875704033748, 'lambd': 0.03966137831592432}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,520] Trial 38 finished with value: 0.0017635295350848512 and parameters: {'sigma': 2.6768442020515435, 'lambd': 0.07738131344642103}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,542] Trial 39 finished with value: 0.0009168877164063005 and parameters: {'sigma': 1.6253181121871743, 'lambd': 0.57049543742156}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,567] Trial 40 finished with value: 0.0023658872647471796 and parameters: {'sigma': 0.8965462221956919, 'lambd': 0.16617167432405108}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,602] Trial 41 finished with value: 0.0005561293378784082 and parameters: {'sigma': 9.909178880944706, 'lambd': 0.3678123002098977}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,647] Trial 42 finished with value: 0.0003001045696182647 and parameters: {'sigma': 6.6681661490512285, 'lambd': 0.24298534437030353}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,704] Trial 43 finished with value: 0.0006213847035683173 and parameters: {'sigma': 6.199460964030569, 'lambd': 0.19375066548511452}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,740] Trial 44 finished with value: 0.0007069991328423342 and parameters: {'sigma': 6.53712779704426, 'lambd': 0.9708892987037245}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,766] Trial 45 finished with value: 0.00327840922837197 and parameters: {'sigma': 0.0763304679999898, 'lambd': 0.5131482700172046}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,796] Trial 46 finished with value: 0.0016639185372400167 and parameters: {'sigma': 0.38672046269397425, 'lambd': 0.09006819632033962}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,840] Trial 47 finished with value: 0.001809793576592611 and parameters: {'sigma': 4.366003373192074, 'lambd': 0.0016215965537156294}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,898] Trial 48 finished with value: 0.0006248699887387854 and parameters: {'sigma': 7.453742811814838, 'lambd': 0.051375779966374185}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:34,956] Trial 49 finished with value: 0.0022116703936509996 and parameters: {'sigma': 0.015049254779191673, 'lambd': 0.023597922252300382}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:35,009] Trial 50 finished with value: 0.0034033147925425222 and parameters: {'sigma': 2.428834761015442, 'lambd': 0.00027764138945784365}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:35,072] Trial 51 finished with value: 0.000656937500455701 and parameters: {'sigma': 7.768734519721114, 'lambd': 0.4041697458893845}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:35,127] Trial 52 finished with value: 0.0007408603494183374 and parameters: {'sigma': 9.470112942957746, 'lambd': 0.6961635796254613}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:35,185] Trial 53 finished with value: 0.0006000158470103045 and parameters: {'sigma': 3.6111782152498817, 'lambd': 0.25500472154410875}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:35,239] Trial 54 finished with value: 0.0003780449475951908 and parameters: {'sigma': 4.802231291345405, 'lambd': 0.11350566738117857}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:35,293] Trial 55 finished with value: 0.0005624337991014805 and parameters: {'sigma': 4.74878570370497, 'lambd': 0.13537290552169404}. Best is trial 22 with value: 0.00020958678078697446.
[I 2025-10-17 17:14:35,347] Trial 56 finished with value: 0.0001980350426795674 and parameters: {'sigma': 7.30540702408865, 'lambd': 0.1176205750643718}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,399] Trial 57 finished with value: 0.0017771006707709702 and parameters: {'sigma': 7.510239189539025, 'lambd': 0.014201631316041985}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,453] Trial 58 finished with value: 0.0011793788655372062 and parameters: {'sigma': 3.023367256690396, 'lambd': 0.10276267457787497}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,509] Trial 59 finished with value: 0.001129901717932702 and parameters: {'sigma': 1.661148766365103, 'lambd': 0.026374914117341327}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,561] Trial 60 finished with value: 0.0011080229394437868 and parameters: {'sigma': 5.568306061426028, 'lambd': 0.05742862884204015}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,616] Trial 61 finished with value: 0.0005128538363763369 and parameters: {'sigma': 7.909095005977163, 'lambd': 0.22898802947953062}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,677] Trial 62 finished with value: 0.0009364884297076159 and parameters: {'sigma': 7.491501519339944, 'lambd': 0.2171041478139598}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,727] Trial 63 finished with value: 0.0006078810193519413 and parameters: {'sigma': 4.8781005371426405, 'lambd': 0.40542345523827006}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,781] Trial 64 finished with value: 0.0010032574099840819 and parameters: {'sigma': 3.53587556438744, 'lambd': 0.11317945429956296}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,831] Trial 65 finished with value: 0.0013528120441843594 and parameters: {'sigma': 7.916320264468055, 'lambd': 4.411420843695402e-05}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,887] Trial 66 finished with value: 0.0008812232655741603 and parameters: {'sigma': 5.114259148578681, 'lambd': 0.22815809103599266}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:35,942] Trial 67 finished with value: 0.0004683798727702637 and parameters: {'sigma': 6.76932238249006, 'lambd': 0.1456603378273577}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:36,001] Trial 68 finished with value: 0.0015802841635983444 and parameters: {'sigma': 3.8512510769564363, 'lambd': 0.14297460219368116}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:36,060] Trial 69 finished with value: 0.002129518671783126 and parameters: {'sigma': 2.7210492185944744, 'lambd': 0.03538814859390222}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:36,119] Trial 70 finished with value: 0.0007796333619327633 and parameters: {'sigma': 6.281394384082659, 'lambd': 0.08005430035572933}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:36,174] Trial 71 finished with value: 0.0018047485645007466 and parameters: {'sigma': 7.704475109216896, 'lambd': 0.2988865601598843}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:36,239] Trial 72 finished with value: 0.00024266149857243846 and parameters: {'sigma': 4.88270831307013, 'lambd': 0.47429903045247124}. Best is trial 56 with value: 0.0001980350426795674.
[I 2025-10-17 17:14:36,275] Trial 73 finished with value: 0.00011409673923967745 and parameters: {'sigma': 4.837745189193317, 'lambd': 0.6775383372602185}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,330] Trial 74 finished with value: 0.0005037726949221888 and parameters: {'sigma': 4.453040443853297, 'lambd': 0.7738274167238229}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,400] Trial 75 finished with value: 0.000991258750055346 and parameters: {'sigma': 5.320238074405867, 'lambd': 0.6075360503901304}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,457] Trial 76 finished with value: 0.0009691436440586454 and parameters: {'sigma': 1.8861921282714436, 'lambd': 0.4280927277783616}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,512] Trial 77 finished with value: 0.0005551761919810883 and parameters: {'sigma': 3.7257876033022606, 'lambd': 0.31528217016459364}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,558] Trial 78 finished with value: 0.0010219034260874338 and parameters: {'sigma': 3.144156874070921, 'lambd': 0.8097033488072441}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,609] Trial 79 finished with value: 0.0019405639987730705 and parameters: {'sigma': 1.1224444747064137, 'lambd': 0.5282553807335726}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,657] Trial 80 finished with value: 0.004197175649950591 and parameters: {'sigma': 0.07578792489830381, 'lambd': 0.17950577627158576}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,705] Trial 81 finished with value: 0.00040697847517368047 and parameters: {'sigma': 6.049642564493944, 'lambd': 0.1391689029105095}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,736] Trial 82 finished with value: 0.0002516208478098303 and parameters: {'sigma': 8.765581889257906, 'lambd': 0.29598232251054285}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,761] Trial 83 finished with value: 0.0010171069768680763 and parameters: {'sigma': 9.400667782038585, 'lambd': 0.31090804848866666}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,801] Trial 84 finished with value: 0.0006423890659776887 and parameters: {'sigma': 5.069109040418955, 'lambd': 0.47803275514460886}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,866] Trial 85 finished with value: 0.00032626857972584133 and parameters: {'sigma': 8.773685603723248, 'lambd': 0.9736936506267027}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,920] Trial 86 finished with value: 0.00022383024125338657 and parameters: {'sigma': 8.58486362903349, 'lambd': 0.9649315596108536}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,959] Trial 87 finished with value: 0.0005726078297922932 and parameters: {'sigma': 8.197713800231636, 'lambd': 0.8575849062247036}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:36,986] Trial 88 finished with value: 0.00039194053528457395 and parameters: {'sigma': 9.779854609540456, 'lambd': 0.6502597991572513}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,013] Trial 89 finished with value: 0.0007796001210169656 and parameters: {'sigma': 6.850199669948823, 'lambd': 0.4270459061543165}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,066] Trial 90 finished with value: 0.0008878254510173988 and parameters: {'sigma': 5.839759753152064, 'lambd': 0.978019234773362}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,140] Trial 91 finished with value: 0.0005135102415951831 and parameters: {'sigma': 8.733044455804215, 'lambd': 0.6417137384528625}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,170] Trial 92 finished with value: 0.0002379975245896393 and parameters: {'sigma': 4.226143667154324, 'lambd': 0.3636979360220931}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,190] Trial 93 finished with value: 0.0007803907005912158 and parameters: {'sigma': 4.1236930851286875, 'lambd': 0.3060197111218387}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,212] Trial 94 finished with value: 0.0001464904667827227 and parameters: {'sigma': 8.534225255359505, 'lambd': 0.4727968794248274}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,235] Trial 95 finished with value: 0.0003836771045013787 and parameters: {'sigma': 6.833505117546917, 'lambd': 0.37608788182699243}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,266] Trial 96 finished with value: 0.0028722293894809514 and parameters: {'sigma': 0.01800739842107343, 'lambd': 0.5548671172540407}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,320] Trial 97 finished with value: 0.0013401362756435553 and parameters: {'sigma': 0.23975120921678886, 'lambd': 0.2719137533919699}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,372] Trial 98 finished with value: 0.00021530273537373468 and parameters: {'sigma': 5.586687613009044, 'lambd': 0.20441657749138106}. Best is trial 73 with value: 0.00011409673923967745.
[I 2025-10-17 17:14:37,422] Trial 99 finished with value: 0.0003498357100084615 and parameters: {'sigma': 5.315870065247185, 'lambd': 0.46267392690947157}. Best is trial 73 with value: 0.00011409673923967745.
Using RFF with 50 components
Bivariate Results:
Best sigma: 4.838, lambda: 0.678, MMD: 0.000
/usr/local/lib/python3.12/dist-packages/synthe/distro_simulator.py:840: UserWarning: p-value capped: true value larger than 0.25. Consider specifying `method` (e.g. `method=stats.PermutationMethod()`.)
ad_result = stats.anderson_ksamp([Y_orig[:, i], Y_sim[:, i]])
/usr/local/lib/python3.12/dist-packages/synthe/distro_simulator.py:840: UserWarning: p-value floored: true value smaller than 0.001. Consider specifying `method` (e.g. `method=stats.PermutationMethod()`.)
ad_result = stats.anderson_ksamp([Y_orig[:, i], Y_sim[:, i]])
============================================================
COMPREHENSIVE STATISTICAL TEST RESULTS
============================================================
Dimension 1:
Kolmogorov-Smirnov Test:
Statistic: 0.071429
p-value: 0.334143
Significance: Not Significant
Anderson-Darling Test:
Statistic: -0.517025
Significance level: 0.250
Interpretation: Distributions similar
Dimension 2:
Kolmogorov-Smirnov Test:
Statistic: 0.057143
p-value: 0.617909
Significance: Not Significant
Anderson-Darling Test:
Statistic: -0.681447
Significance level: 0.250
Interpretation: Distributions similar
Dimension 3:
Kolmogorov-Smirnov Test:
Statistic: 0.051429
p-value: 0.744448
Significance: Not Significant
Anderson-Darling Test:
Statistic: -0.166155
Significance level: 0.250
Interpretation: Distributions similar
Dimension 4:
Kolmogorov-Smirnov Test:
Statistic: 0.182857
p-value: 0.000016
Significance: SIGNIFICANT
Anderson-Darling Test:
Statistic: 15.807250
Significance level: 0.001
Interpretation: Distributions differ
Dimension 5:
Kolmogorov-Smirnov Test:
Statistic: 0.051429
p-value: 0.744448
Significance: Not Significant
Anderson-Darling Test:
Statistic: -0.888281
Significance level: 0.250
Interpretation: Distributions similar
Dimension 6:
Kolmogorov-Smirnov Test:
Statistic: 0.071429
p-value: 0.334143
Significance: Not Significant
Anderson-Darling Test:
Statistic: 0.115670
Significance level: 0.250
Interpretation: Distributions similar
Dimension 7:
Kolmogorov-Smirnov Test:
Statistic: 0.057143
p-value: 0.617909
Significance: Not Significant
Anderson-Darling Test:
Statistic: -0.406425
Significance level: 0.250
Interpretation: Distributions similar
Dimension 8:
Kolmogorov-Smirnov Test:
Statistic: 0.074286
p-value: 0.289300
Significance: Not Significant
Anderson-Darling Test:
Statistic: 0.644059
Significance level: 0.179
Interpretation: Distributions similar
Dimension 9:
Kolmogorov-Smirnov Test:
Statistic: 0.054286
p-value: 0.681633
Significance: Not Significant
Anderson-Darling Test:
Statistic: -0.512941
Significance level: 0.250
Interpretation: Distributions similar
Dimension 10:
Kolmogorov-Smirnov Test:
Statistic: 0.071429
p-value: 0.334143
Significance: Not Significant
Anderson-Darling Test:
Statistic: 0.105073
Significance level: 0.250
Interpretation: Distributions similar
{'ks_results': [(np.float64(0.07142857142857142),
np.float64(0.33414277179281887)),
(np.float64(0.05714285714285714), np.float64(0.6179086766712222)),
(np.float64(0.05142857142857143), np.float64(0.7444477161091746)),
(np.float64(0.18285714285714286), np.float64(1.5747515517642453e-05)),
(np.float64(0.05142857142857143), np.float64(0.7444477161091746)),
(np.float64(0.07142857142857142), np.float64(0.33414277179281887)),
(np.float64(0.05714285714285714), np.float64(0.6179086766712222)),
(np.float64(0.07428571428571429), np.float64(0.2893000501430068)),
(np.float64(0.054285714285714284), np.float64(0.6816329570848737)),
(np.float64(0.07142857142857142), np.float64(0.33414277179281887))],
'ad_results': [(np.float64(-0.5170247542790974), np.float64(0.25)),
(np.float64(-0.6814466337397485), np.float64(0.25)),
(np.float64(-0.16615496895697046), np.float64(0.25)),
(np.float64(15.807250144266789), np.float64(0.001)),
(np.float64(-0.8882811421178678), np.float64(0.25)),
(np.float64(0.11566983431582328), np.float64(0.25)),
(np.float64(-0.4064249682682882), np.float64(0.25)),
(np.float64(0.6440585815762728), 0.17914164508840966),
(np.float64(-0.5129406111560781), np.float64(0.25)),
(np.float64(0.10507310724372729), np.float64(0.25))],
'dimensions': 10}
For attribution, please cite this work as:
T. Moudiki (2025-10-19). GAN-like Synthetic Data Generation Examples with DistroSimulator. Retrieved from https://thierrymoudiki.github.io/blog/2025/10/19/r/python/P-Y-GAN-like
BibTeX citation (remove empty spaces)@misc{ tmoudiki20251019, author = { T. Moudiki }, title = { GAN-like Synthetic Data Generation Examples with DistroSimulator }, url = { https://thierrymoudiki.github.io/blog/2025/10/19/r/python/P-Y-GAN-like }, year = { 2025 } }
Previous publications
- GAN-like Synthetic Data Generation Examples with DistroSimulator Oct 19, 2025
- Part2 of More data (> 150 files) on T. Moudiki's situation: a riddle/puzzle (including R, Python, bash interfaces to the game -- but everyone can play) Oct 16, 2025
- More data (> 150 files) on T. Moudiki's situation: a riddle/puzzle (including R, Python, bash interfaces to the game -- but everyone can play) Oct 12, 2025
- R port of llama2.c Oct 9, 2025
- Native uncertainty quantification for time series with NGBoost Oct 8, 2025
- NGBoost (Natural Gradient Boosting) for Regression, Classification, Time Series forecasting and Reserving Oct 6, 2025
- Real-time pricing with a pretrained probabilistic stock return model Oct 1, 2025
- Combining any model with GARCH(1,1) for probabilistic stock forecasting Sep 23, 2025
- Generating Synthetic Data with R-vine Copulas using esgtoolkit in R Sep 21, 2025
- Reimagining Equity Solvency Capital Requirement Approximation (one of my Master's Thesis subjects): From Bilinear Interpolation to Probabilistic Machine Learning Sep 16, 2025
- Transfer Learning using ahead::ridge2f on synthetic stocks returns Pt.2: synthetic data generation Sep 9, 2025
- Transfer Learning using ahead::ridge2f on synthetic stocks returns Sep 8, 2025
- I'm supposed to present 'Conformal Predictive Simulations for Univariate Time Series' at COPA CONFERENCE 2025 in London... Sep 4, 2025
- external regressors in ahead::dynrmf's interface for Machine learning forecasting Sep 1, 2025
- Another interesting decision, now for 'Beyond Nelson-Siegel and splines: A model-agnostic Machine Learning framework for discount curve calibration, interpolation and extrapolation' Aug 20, 2025
- Boosting any randomized based learner for regression, classification and univariate/multivariate time series forcasting Jul 26, 2025
- New nnetsauce version with CustomBackPropRegressor (CustomRegressor with Backpropagation) and ElasticNet2Regressor (Ridge2 with ElasticNet regularization) Jul 15, 2025
- mlsauce (home to a model-agnostic gradient boosting algorithm) can now be installed from PyPI. Jul 10, 2025
- A user-friendly graphical interface to techtonique dot net's API (will eventually contain graphics). Jul 8, 2025
- Calling =TECHTO_MLCLASSIFICATION for Machine Learning supervised CLASSIFICATION in Excel is just a matter of copying and pasting Jul 7, 2025
- Calling =TECHTO_MLREGRESSION for Machine Learning supervised regression in Excel is just a matter of copying and pasting Jul 6, 2025
- Calling =TECHTO_RESERVING and =TECHTO_MLRESERVING for claims triangle reserving in Excel is just a matter of copying and pasting Jul 5, 2025
- Calling =TECHTO_SURVIVAL for Survival Analysis in Excel is just a matter of copying and pasting Jul 4, 2025
- Calling =TECHTO_SIMULATION for Stochastic Simulation in Excel is just a matter of copying and pasting Jul 3, 2025
- Calling =TECHTO_FORECAST for forecasting in Excel is just a matter of copying and pasting Jul 2, 2025
- Random Vector Functional Link (RVFL) artificial neural network with 2 regularization parameters successfully used for forecasting/synthetic simulation in professional settings: Extensions (including Bayesian) Jul 1, 2025
- R version of 'Backpropagating quasi-randomized neural networks' Jun 24, 2025
- Backpropagating quasi-randomized neural networks Jun 23, 2025
- Beyond ARMA-GARCH: leveraging any statistical model for volatility forecasting Jun 21, 2025
- Stacked generalization (Machine Learning model stacking) + conformal prediction for forecasting with ahead::mlf Jun 18, 2025
- An Overfitting dilemma: XGBoost Default Hyperparameters vs GenericBooster + LinearRegression Default Hyperparameters Jun 14, 2025
- Programming language-agnostic reserving using RidgeCV, LightGBM, XGBoost, and ExtraTrees Machine Learning models Jun 13, 2025
- Exceptionally, and on a more personal note (otherwise I may get buried alive)... Jun 10, 2025
- Free R, Python and SQL editors in techtonique dot net Jun 9, 2025
- Beyond Nelson-Siegel and splines: A model-agnostic Machine Learning framework for discount curve calibration, interpolation and extrapolation Jun 7, 2025
- scikit-learn, glmnet, xgboost, lightgbm, pytorch, keras, nnetsauce in probabilistic Machine Learning (for longitudinal data) Reserving (work in progress) Jun 6, 2025
- R version of Probabilistic Machine Learning (for longitudinal data) Reserving (work in progress) Jun 5, 2025
- Probabilistic Machine Learning (for longitudinal data) Reserving (work in progress) Jun 4, 2025
- Python version of Beyond ARMA-GARCH: leveraging model-agnostic Quasi-Randomized networks and conformal prediction for nonparametric probabilistic stock forecasting (ML-ARCH) Jun 3, 2025
- Beyond ARMA-GARCH: leveraging model-agnostic Machine Learning and conformal prediction for nonparametric probabilistic stock forecasting (ML-ARCH) Jun 2, 2025
- Permutations and SHAPley values for feature importance in techtonique dot net's API (with R + Python + the command line) Jun 1, 2025
- Which patient is going to survive longer? Another guide to using techtonique dot net's API (with R + Python + the command line) for survival analysis May 31, 2025
- A Guide to Using techtonique.net's API and rush for simulating and plotting Stochastic Scenarios May 30, 2025
- Simulating Stochastic Scenarios with Diffusion Models: A Guide to Using techtonique.net's API for the purpose May 29, 2025
- Will my apartment in 5th avenue be overpriced or not? Harnessing the power of www.techtonique.net (+ xgboost, lightgbm, catboost) to find out May 28, 2025
- How long must I wait until something happens: A Comprehensive Guide to Survival Analysis via an API May 27, 2025
- Harnessing the Power of techtonique.net: A Comprehensive Guide to Machine Learning Classification via an API May 26, 2025
- Quantile regression with any regressor -- Examples with RandomForestRegressor, RidgeCV, KNeighborsRegressor May 20, 2025
- Survival stacking: survival analysis translated as supervised classification in R and Python May 5, 2025
- 'Bayesian' optimization of hyperparameters in a R machine learning model using the bayesianrvfl package Apr 25, 2025
- A lightweight interface to scikit-learn in R: Bayesian and Conformal prediction Apr 21, 2025
- A lightweight interface to scikit-learn in R Pt.2: probabilistic time series forecasting in conjunction with ahead::dynrmf Apr 20, 2025
- Extending the Theta forecasting method to GLMs, GAMs, GLMBOOST and attention: benchmarking on Tourism, M1, M3 and M4 competition data sets (28000 series) Apr 14, 2025
- Extending the Theta forecasting method to GLMs and attention Apr 8, 2025
- Nonlinear conformalized Generalized Linear Models (GLMs) with R package 'rvfl' (and other models) Mar 31, 2025
- Probabilistic Time Series Forecasting (predictive simulations) in Microsoft Excel using Python, xlwings lite and www.techtonique.net Mar 28, 2025
- Conformalize (improved prediction intervals and simulations) any R Machine Learning model with misc::conformalize Mar 25, 2025
- My poster for the 18th FINANCIAL RISKS INTERNATIONAL FORUM by Institut Louis Bachelier/Fondation du Risque/Europlace Institute of Finance Mar 19, 2025
- Interpretable probabilistic kernel ridge regression using Matérn 3/2 kernels Mar 16, 2025
- (News from) Probabilistic Forecasting of univariate and multivariate Time Series using Quasi-Randomized Neural Networks (Ridge2) and Conformal Prediction Mar 9, 2025
- Word-Online: re-creating Karpathy's char-RNN (with supervised linear online learning of word embeddings) for text completion Mar 8, 2025
- CRAN-like repository for most recent releases of Techtonique's R packages Mar 2, 2025
- Presenting 'Online Probabilistic Estimation of Carbon Beta and Carbon Shapley Values for Financial and Climate Risk' at Institut Louis Bachelier Feb 27, 2025
- Web app with DeepSeek R1 and Hugging Face API for chatting Feb 23, 2025
- tisthemachinelearner: A Lightweight interface to scikit-learn with 2 classes, Classifier and Regressor (in Python and R) Feb 17, 2025
- R version of survivalist: Probabilistic model-agnostic survival analysis using scikit-learn, xgboost, lightgbm (and conformal prediction) Feb 12, 2025
- Model-agnostic global Survival Prediction of Patients with Myeloid Leukemia in QRT/Gustave Roussy Challenge (challengedata.ens.fr): Python's survivalist Quickstart Feb 10, 2025
- A simple test of the martingale hypothesis in esgtoolkit Feb 3, 2025
- Command Line Interface (CLI) for techtonique.net's API Jan 31, 2025
- Gradient-Boosting and Boostrap aggregating anything (alert: high performance): Part5, easier install and Rust backend Jan 27, 2025
- Just got a paper on conformal prediction REJECTED by International Journal of Forecasting despite evidence on 30,000 time series (and more). What's going on? Part2: 1311 time series from the Tourism competition Jan 20, 2025
- Techtonique is out! (with a tutorial in various programming languages and formats) Jan 14, 2025
- Univariate and Multivariate Probabilistic Forecasting with nnetsauce and TabPFN Jan 14, 2025
- Just got a paper on conformal prediction REJECTED by International Journal of Forecasting despite evidence on 30,000 time series (and more). What's going on? Jan 5, 2025
- Python and Interactive dashboard version of Stock price forecasting with Deep Learning: throwing power at the problem (and why it won't make you rich) Dec 31, 2024
- Stock price forecasting with Deep Learning: throwing power at the problem (and why it won't make you rich) Dec 29, 2024
- No-code Machine Learning Cross-validation and Interpretability in techtonique.net Dec 23, 2024
- survivalist: Probabilistic model-agnostic survival analysis using scikit-learn, glmnet, xgboost, lightgbm, pytorch, keras, nnetsauce and mlsauce Dec 15, 2024
- Model-agnostic 'Bayesian' optimization (for hyperparameter tuning) using conformalized surrogates in GPopt Dec 9, 2024
- You can beat Forecasting LLMs (Large Language Models a.k.a foundation models) with nnetsauce.MTS Pt.2: Generic Gradient Boosting Dec 1, 2024
- You can beat Forecasting LLMs (Large Language Models a.k.a foundation models) with nnetsauce.MTS Nov 24, 2024
- Unified interface and conformal prediction (calibrated prediction intervals) for R package forecast (and 'affiliates') Nov 23, 2024
- GLMNet in Python: Generalized Linear Models Nov 18, 2024
- Gradient-Boosting anything (alert: high performance): Part4, Time series forecasting Nov 10, 2024
- Predictive scenarios simulation in R, Python and Excel using Techtonique API Nov 3, 2024
- Chat with your tabular data in www.techtonique.net Oct 30, 2024
- Gradient-Boosting anything (alert: high performance): Part3, Histogram-based boosting Oct 28, 2024
- R editor and SQL console (in addition to Python editors) in www.techtonique.net Oct 21, 2024
- R and Python consoles + JupyterLite in www.techtonique.net Oct 15, 2024
- Gradient-Boosting anything (alert: high performance): Part2, R version Oct 14, 2024
- Gradient-Boosting anything (alert: high performance) Oct 6, 2024
- Benchmarking 30 statistical/Machine Learning models on the VN1 Forecasting -- Accuracy challenge Oct 4, 2024
- Automated random variable distribution inference using Kullback-Leibler divergence and simulating best-fitting distribution Oct 2, 2024
- Forecasting in Excel using Techtonique's Machine Learning APIs under the hood Sep 30, 2024
- Techtonique web app for data-driven decisions using Mathematics, Statistics, Machine Learning, and Data Visualization Sep 25, 2024
- Parallel for loops (Map or Reduce) + New versions of nnetsauce and ahead Sep 16, 2024
- Adaptive (online/streaming) learning with uncertainty quantification using Polyak averaging in learningmachine Sep 10, 2024
- New versions of nnetsauce and ahead Sep 9, 2024
- Prediction sets and prediction intervals for conformalized Auto XGBoost, Auto LightGBM, Auto CatBoost, Auto GradientBoosting Sep 2, 2024
- Quick/automated R package development workflow (assuming you're using macOS or Linux) Part2 Aug 30, 2024
- R package development workflow (assuming you're using macOS or Linux) Aug 27, 2024
- A new method for deriving a nonparametric confidence interval for the mean Aug 26, 2024
- Conformalized adaptive (online/streaming) learning using learningmachine in Python and R Aug 19, 2024
- Bayesian (nonlinear) adaptive learning Aug 12, 2024
- Auto XGBoost, Auto LightGBM, Auto CatBoost, Auto GradientBoosting Aug 5, 2024
- Copulas for uncertainty quantification in time series forecasting Jul 28, 2024
- Forecasting uncertainty: sequential split conformal prediction + Block bootstrap (web app) Jul 22, 2024
- learningmachine for Python (new version) Jul 15, 2024
- learningmachine v2.0.0: Machine Learning with explanations and uncertainty quantification Jul 8, 2024
- My presentation at ISF 2024 conference (slides with nnetsauce probabilistic forecasting news) Jul 3, 2024
- 10 uncertainty quantification methods in nnetsauce forecasting Jul 1, 2024
- Forecasting with XGBoost embedded in Quasi-Randomized Neural Networks Jun 24, 2024
- Forecasting Monthly Airline Passenger Numbers with Quasi-Randomized Neural Networks Jun 17, 2024
- Automated hyperparameter tuning using any conformalized surrogate Jun 9, 2024
- Recognizing handwritten digits with Ridge2Classifier Jun 3, 2024
- Forecasting the Economy May 27, 2024
- A detailed introduction to Deep Quasi-Randomized 'neural' networks May 19, 2024
- Probability of receiving a loan; using learningmachine May 12, 2024
- mlsauce's `v0.18.2`: various examples and benchmarks with dimension reduction May 6, 2024
- mlsauce's `v0.17.0`: boosting with Elastic Net, polynomials and heterogeneity in explanatory variables Apr 29, 2024
- mlsauce's `v0.13.0`: taking into account inputs heterogeneity through clustering Apr 21, 2024
- mlsauce's `v0.12.0`: prediction intervals for LSBoostRegressor Apr 15, 2024
- Conformalized predictive simulations for univariate time series on more than 250 data sets Apr 7, 2024
- learningmachine v1.1.2: for Python Apr 1, 2024
- learningmachine v1.0.0: prediction intervals around the probability of the event 'a tumor being malignant' Mar 25, 2024
- Bayesian inference and conformal prediction (prediction intervals) in nnetsauce v0.18.1 Mar 18, 2024
- Multiple examples of Machine Learning forecasting with ahead Mar 11, 2024
- rtopy (v0.1.1): calling R functions in Python Mar 4, 2024
- ahead forecasting (v0.10.0): fast time series model calibration and Python plots Feb 26, 2024
- A plethora of datasets at your fingertips Part3: how many times do couples cheat on each other? Feb 19, 2024
- nnetsauce's introduction as of 2024-02-11 (new version 0.17.0) Feb 11, 2024
- Tuning Machine Learning models with GPopt's new version Part 2 Feb 5, 2024
- Tuning Machine Learning models with GPopt's new version Jan 29, 2024
- Subsampling continuous and discrete response variables Jan 22, 2024
- DeepMTS, a Deep Learning Model for Multivariate Time Series Jan 15, 2024
- A classifier that's very accurate (and deep) Pt.2: there are > 90 classifiers in nnetsauce Jan 8, 2024
- learningmachine: prediction intervals for conformalized Kernel ridge regression and Random Forest Jan 1, 2024
- A plethora of datasets at your fingertips Part2: how many times do couples cheat on each other? Descriptive analytics, interpretability and prediction intervals using conformal prediction Dec 25, 2023
- Diffusion models in Python with esgtoolkit (Part2) Dec 18, 2023
- Diffusion models in Python with esgtoolkit Dec 11, 2023
- Julia packaging at the command line Dec 4, 2023
- Quasi-randomized nnetworks in Julia, Python and R Nov 27, 2023
- A plethora of datasets at your fingertips Nov 20, 2023
- A classifier that's very accurate (and deep) Nov 12, 2023
- mlsauce version 0.8.10: Statistical/Machine Learning with Python and R Nov 5, 2023
- AutoML in nnetsauce (randomized and quasi-randomized nnetworks) Pt.2: multivariate time series forecasting Oct 29, 2023
- AutoML in nnetsauce (randomized and quasi-randomized nnetworks) Oct 22, 2023
- Version v0.14.0 of nnetsauce for R and Python Oct 16, 2023
- A diffusion model: G2++ Oct 9, 2023
- Diffusion models in ESGtoolkit + announcements Oct 2, 2023
- An infinity of time series forecasting models in nnetsauce (Part 2 with uncertainty quantification) Sep 25, 2023
- (News from) forecasting in Python with ahead (progress bars and plots) Sep 18, 2023
- Forecasting in Python with ahead Sep 11, 2023
- Risk-neutralize simulations Sep 4, 2023
- Comparing cross-validation results using crossval_ml and boxplots Aug 27, 2023
- Reminder Apr 30, 2023
- Did you ask ChatGPT about who you are? Apr 16, 2023
- A new version of nnetsauce (randomized and quasi-randomized 'neural' networks) Apr 2, 2023
- Simple interfaces to the forecasting API Nov 23, 2022
- A web application for forecasting in Python, R, Ruby, C#, JavaScript, PHP, Go, Rust, Java, MATLAB, etc. Nov 2, 2022
- Prediction intervals (not only) for Boosted Configuration Networks in Python Oct 5, 2022
- Boosted Configuration (neural) Networks Pt. 2 Sep 3, 2022
- Boosted Configuration (_neural_) Networks for classification Jul 21, 2022
- A Machine Learning workflow using Techtonique Jun 6, 2022
- Super Mario Bros © in the browser using PyScript May 8, 2022
- News from ESGtoolkit, ycinterextra, and nnetsauce Apr 4, 2022
- Explaining a Keras _neural_ network predictions with the-teller Mar 11, 2022
- New version of nnetsauce -- various quasi-randomized networks Feb 12, 2022
- A dashboard illustrating bivariate time series forecasting with `ahead` Jan 14, 2022
- Hundreds of Statistical/Machine Learning models for univariate time series, using ahead, ranger, xgboost, and caret Dec 20, 2021
- Forecasting with `ahead` (Python version) Dec 13, 2021
- Tuning and interpreting LSBoost Nov 15, 2021
- Time series cross-validation using `crossvalidation` (Part 2) Nov 7, 2021
- Fast and scalable forecasting with ahead::ridge2f Oct 31, 2021
- Automatic Forecasting with `ahead::dynrmf` and Ridge regression Oct 22, 2021
- Forecasting with `ahead` Oct 15, 2021
- Classification using linear regression Sep 26, 2021
- `crossvalidation` and random search for calibrating support vector machines Aug 6, 2021
- parallel grid search cross-validation using `crossvalidation` Jul 31, 2021
- `crossvalidation` on R-universe, plus a classification example Jul 23, 2021
- Documentation and source code for GPopt, a package for Bayesian optimization Jul 2, 2021
- Hyperparameters tuning with GPopt Jun 11, 2021
- A forecasting tool (API) with examples in curl, R, Python May 28, 2021
- Bayesian Optimization with GPopt Part 2 (save and resume) Apr 30, 2021
- Bayesian Optimization with GPopt Apr 16, 2021
- Compatibility of nnetsauce and mlsauce with scikit-learn Mar 26, 2021
- Explaining xgboost predictions with the teller Mar 12, 2021
- An infinity of time series models in nnetsauce Mar 6, 2021
- New activation functions in mlsauce's LSBoost Feb 12, 2021
- 2020 recap, Gradient Boosting, Generalized Linear Models, AdaOpt with nnetsauce and mlsauce Dec 29, 2020
- A deeper learning architecture in nnetsauce Dec 18, 2020
- Classify penguins with nnetsauce's MultitaskClassifier Dec 11, 2020
- Bayesian forecasting for uni/multivariate time series Dec 4, 2020
- Generalized nonlinear models in nnetsauce Nov 28, 2020
- Boosting nonlinear penalized least squares Nov 21, 2020
- Statistical/Machine Learning explainability using Kernel Ridge Regression surrogates Nov 6, 2020
- NEWS Oct 30, 2020
- A glimpse into my PhD journey Oct 23, 2020
- Submitting R package to CRAN Oct 16, 2020
- Simulation of dependent variables in ESGtoolkit Oct 9, 2020
- Forecasting lung disease progression Oct 2, 2020
- New nnetsauce Sep 25, 2020
- Technical documentation Sep 18, 2020
- A new version of nnetsauce, and a new Techtonique website Sep 11, 2020
- Back next week, and a few announcements Sep 4, 2020
- Explainable 'AI' using Gradient Boosted randomized networks Pt2 (the Lasso) Jul 31, 2020
- LSBoost: Explainable 'AI' using Gradient Boosted randomized networks (with examples in R and Python) Jul 24, 2020
- nnetsauce version 0.5.0, randomized neural networks on GPU Jul 17, 2020
- Maximizing your tip as a waiter (Part 2) Jul 10, 2020
- New version of mlsauce, with Gradient Boosted randomized networks and stump decision trees Jul 3, 2020
- Announcements Jun 26, 2020
- Parallel AdaOpt classification Jun 19, 2020
- Comments section and other news Jun 12, 2020
- Maximizing your tip as a waiter Jun 5, 2020
- AdaOpt classification on MNIST handwritten digits (without preprocessing) May 29, 2020
- AdaOpt (a probabilistic classifier based on a mix of multivariable optimization and nearest neighbors) for R May 22, 2020
- AdaOpt May 15, 2020
- Custom errors for cross-validation using crossval::crossval_ml May 8, 2020
- Documentation+Pypi for the `teller`, a model-agnostic tool for Machine Learning explainability May 1, 2020
- Encoding your categorical variables based on the response variable and correlations Apr 24, 2020
- Linear model, xgboost and randomForest cross-validation using crossval::crossval_ml Apr 17, 2020
- Grid search cross-validation using crossval Apr 10, 2020
- Documentation for the querier, a query language for Data Frames Apr 3, 2020
- Time series cross-validation using crossval Mar 27, 2020
- On model specification, identification, degrees of freedom and regularization Mar 20, 2020
- Import data into the querier (now on Pypi), a query language for Data Frames Mar 13, 2020
- R notebooks for nnetsauce Mar 6, 2020
- Version 0.4.0 of nnetsauce, with fruits and breast cancer classification Feb 28, 2020
- Create a specific feed in your Jekyll blog Feb 21, 2020
- Git/Github for contributing to package development Feb 14, 2020
- Feedback forms for contributing Feb 7, 2020
- nnetsauce for R Jan 31, 2020
- A new version of nnetsauce (v0.3.1) Jan 24, 2020
- ESGtoolkit, a tool for Monte Carlo simulation (v0.2.0) Jan 17, 2020
- Search bar, new year 2020 Jan 10, 2020
- 2019 Recap, the nnetsauce, the teller and the querier Dec 20, 2019
- Understanding model interactions with the `teller` Dec 13, 2019
- Using the `teller` on a classifier Dec 6, 2019
- Benchmarking the querier's verbs Nov 29, 2019
- Composing the querier's verbs for data wrangling Nov 22, 2019
- Comparing and explaining model predictions with the teller Nov 15, 2019
- Tests for the significance of marginal effects in the teller Nov 8, 2019
- Introducing the teller Nov 1, 2019
- Introducing the querier Oct 25, 2019
- Prediction intervals for nnetsauce models Oct 18, 2019
- Using R in Python for statistical learning/data science Oct 11, 2019
- Model calibration with `crossval` Oct 4, 2019
- Bagging in the nnetsauce Sep 25, 2019
- Adaboost learning with nnetsauce Sep 18, 2019
- Change in blog's presentation Sep 4, 2019
- nnetsauce on Pypi Jun 5, 2019
- More nnetsauce (examples of use) May 9, 2019
- nnetsauce Mar 13, 2019
- crossval Mar 13, 2019
- test Mar 10, 2019
Comments powered by Talkyard.