Today, give a try to Techtonique web app, a tool designed to help you make informed, data-driven decisions using Mathematics, Statistics, Machine Learning, and Data Visualization. Here is a tutorial with audio, video, code, and slides: https://moudiki2.gumroad.com/l/nrhgb
Survival analysis is a group of Statistical/Machine Learning (ML) methods for predicting the time until an event of interest occurs. Examples of events include:
- death
- failure
- recovery
- default
- etc.
And the event of interest can be anything that has a duration:
- the time until a machine breaks down
- the time until a customer buys a product
- the time until a patient dies
- etc.
The event can be censored, meaning that it has’nt occurred for some subjects at the time of analysis.
In this post, I show how to use scikit-learn
, glmnet
, xgboost
, lightgbm
, pytorch
, keras
, nnetsauce
and mlsauce
in conjuction with Python package survivalist
for probabilistic survival analysis. The probabilistic part is based on conformal prediction and Bayesian inference, and graphics represent the out-of-sample ML survival function vs Empirical Kaplan-Meier survival function (with confidence intervals).
A link to the corresponding notebook can be found at the end of this post.
Contents
- Contents
- 0 - Installation
- 1 - using
scikit-learn
with conformal prediction - 2 - using
nnetsauce
- 3 - using
glmnet
- 4 - using
pytorch
- 5 - Using keras (through
scikeras
) - 6 - using
xgboost
- 7 - using
lightgbm
- 8 - using Generic Boosting (
mlsauce
)
0 - Installation
!pip uninstall -y survivalist
!pip install survivalist --upgrade --no-cache-dir
!pip install glmnetforpython --verbose --upgrade --no-cache-dir
!pip install nnetsauce --verbose --upgrade --no-cache-dir
!pip install scikeras
!pip install xgboost --upgrade --no-cache-dir
!pip install lightgbm --upgrade --no-cache-dir
!pip install git+https://github.com/Techtonique/mlsauce.git --verbose
import numpy as np
import pandas as pd
def _encode_categorical_columns(df, categorical_columns=None):
"""
Automatically identifies categorical columns and applies one-hot encoding.
Parameters:
- df (pd.DataFrame): The input DataFrame with mixed continuous and categorical variables.
- categorical_columns (list): Optional list of column names to treat as categorical.
Returns:
- pd.DataFrame: A new DataFrame with one-hot encoded categorical columns.
"""
# Automatically identify categorical columns if not provided
if categorical_columns is None:
categorical_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
# Apply one-hot encoding to the identified categorical columns
df_encoded = pd.get_dummies(df, columns=categorical_columns)
# Convert boolean columns to integer (0 and 1)
bool_columns = df_encoded.select_dtypes(include=['bool']).columns.tolist()
df_encoded[bool_columns] = df_encoded[bool_columns].astype(int)
return df_encoded
import matplotlib.pyplot as plt
import nnetsauce as ns
import glmnetforpython as glmnet
from survivalist.nonparametric import kaplan_meier_estimator
from survivalist.datasets import load_whas500, load_gbsg2, load_veterans_lung_cancer
from survivalist.ensemble import ComponentwiseGenGradientBoostingSurvivalAnalysis
from survivalist.custom import SurvivalCustom
from survivalist.custom import PISurvivalCustom
from survivalist.ensemble import GradientBoostingSurvivalAnalysis
from sklearn.linear_model import RidgeCV, ElasticNetCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import ExtraTreeRegressor
from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from survivalist.ensemble import PIComponentwiseGenGradientBoostingSurvivalAnalysis
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from time import time
import matplotlib.pyplot as plt
import nnetsauce as ns
import numpy as np
from survivalist.datasets import load_whas500, load_veterans_lung_cancer, load_gbsg2
from survivalist.custom import SurvivalCustom
from sklearn.linear_model import BayesianRidge, ARDRegression
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor
from sklearn.neural_network import MLPRegressor
from survivalist.metrics import brier_score, integrated_brier_score
from time import time
import pandas as pd
1 - using scikit-learn
with conformal prediction
X, y = load_whas500()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=RidgeCV(), type_pi="bootstrap")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:09<00:00, 10.54it/s]
100%|██████████| 100/100 [00:10<00:00, 9.61it/s]
X, y = load_gbsg2()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=RidgeCV(), type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:02<00:00, 42.51it/s]
100%|██████████| 100/100 [00:02<00:00, 42.67it/s]
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=RidgeCV(), type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:02<00:00, 44.45it/s]
100%|██████████| 100/100 [00:02<00:00, 35.99it/s]
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=RidgeCV(), type_pi="ecdf")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:01<00:00, 51.44it/s]
100%|██████████| 100/100 [00:01<00:00, 51.30it/s]
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=RidgeCV(), type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:01<00:00, 51.20it/s]
100%|██████████| 100/100 [00:01<00:00, 51.52it/s]
2 - using nnetsauce
2 - 1 with conformal prediction
X, y = load_whas500()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=ns.CustomRegressor(RidgeCV()),
type_pi="bootstrap")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:42<00:00, 2.35it/s]
100%|██████████| 100/100 [00:40<00:00, 2.46it/s]
from pickle import Pickler
X, y = load_whas500()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=ns.CustomRegressor(RidgeCV()), type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_gbsg2()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=ns.CustomRegressor(RidgeCV()),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:22<00:00, 4.48it/s]
100%|██████████| 100/100 [00:21<00:00, 4.71it/s]
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=ns.CustomRegressor(RidgeCV()),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:17<00:00, 5.88it/s]
100%|██████████| 100/100 [00:18<00:00, 5.42it/s]
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=ns.CustomRegressor(RandomForestRegressor()),
type_pi="bootstrap")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=ns.CustomRegressor(RidgeCV()),
type_pi="ecdf")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:16<00:00, 5.95it/s]
100%|██████████| 100/100 [00:17<00:00, 5.79it/s]
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=ns.CustomRegressor(RandomForestRegressor()),
type_pi="ecdf")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=ns.CustomRegressor(RidgeCV()),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:27<00:00, 3.69it/s]
100%|██████████| 100/100 [00:16<00:00, 6.04it/s]
2 - 2 with Bayesian Inference
def encode_categorical_columns(df, categorical_columns=None):
"""
Automatically identifies categorical columns and applies one-hot encoding.
Parameters:
- df (pd.DataFrame): The input DataFrame with mixed continuous and categorical variables.
- categorical_columns (list): Optional list of column names to treat as categorical.
Returns:
- pd.DataFrame: A new DataFrame with one-hot encoded categorical columns.
"""
# Automatically identify categorical columns if not provided
if categorical_columns is None:
categorical_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
# Apply one-hot encoding to the identified categorical columns
df_encoded = pd.get_dummies(df, columns=categorical_columns)
# Convert boolean columns to integer (0 and 1)
bool_columns = df_encoded.select_dtypes(include=['bool']).columns.tolist()
df_encoded[bool_columns] = df_encoded[bool_columns].astype(int)
return df_encoded
X, y = load_veterans_lung_cancer()
X = encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.4,
random_state=42)
print("\n\n BayesianRidge ------------------")
estimator = SurvivalCustom(regr=ns.CustomRegressor(BayesianRidge()))
estimator2 = SurvivalCustom(regr=ns.CustomRegressor(GaussianProcessRegressor()))
estimator3 = SurvivalCustom(regr=ns.CustomRegressor(ARDRegression()))
start = time()
estimator.fit(X_train, y_train)
print("Time to fit BayesianRidge: ", time() - start)
start = time()
estimator2.fit(X_train, y_train)
print("Time to fit GaussianProcessRegressor: ", time() - start)
start = time()
estimator3.fit(X_train, y_train)
print("Time to fit ARDRegression: ", time() - start)
surv_funcs = estimator.predict_survival_function(X_test.iloc[0:1,:], return_std=True)
surv_funcs2 = estimator2.predict_survival_function(X_test.iloc[0:1,:], return_std=True)
surv_funcs3 = estimator3.predict_survival_function(X_test.iloc[0:1,:], return_std=True)
BayesianRidge ------------------
Time to fit BayesianRidge: 0.17850041389465332
Time to fit GaussianProcessRegressor: 0.4104886054992676
Time to fit ARDRegression: 0.5052413940429688
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
for fn in surv_funcs2.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs2.lower[0].y, surv_funcs2.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
for fn in surv_funcs3.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs3.lower[0].y, surv_funcs3.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
3 - using glmnet
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=ns.CustomRegressor(glmnet.GLMNet(lambdau=1000)),
type_pi="bootstrap")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr=ns.CustomRegressor(glmnet.GLMNet(lambdau=1000)),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
100%|██████████| 100/100 [00:36<00:00, 2.71it/s]
100%|██████████| 100/100 [00:40<00:00, 2.49it/s]
4 - using pytorch
import torch
import torch.nn as nn
import numpy as np
from sklearn.base import BaseEstimator, RegressorMixin
class MLPRegressorTorch(BaseEstimator, RegressorMixin):
def __init__(self, input_size=1, hidden_sizes=(64, 32), activation=nn.ReLU,
learning_rate=0.001, max_epochs=100, batch_size=32, random_state=None):
self.input_size = input_size
self.hidden_sizes = hidden_sizes
self.activation = activation
self.learning_rate = learning_rate
self.max_epochs = max_epochs
self.batch_size = batch_size
self.random_state = random_state
if self.random_state is not None:
torch.manual_seed(self.random_state)
def _build_model(self):
layers = []
input_dim = self.input_size
for hidden_size in self.hidden_sizes:
layers.append(nn.Linear(input_dim, hidden_size))
layers.append(self.activation())
input_dim = hidden_size
layers.append(nn.Linear(input_dim, 1)) # Output layer
self.model = nn.Sequential(*layers)
def fit(self, X, y, sample_weight=None):
if sample_weight is not None:
sample_weight = torch.tensor(sample_weight, dtype=torch.float32)
X, y = self._prepare_data(X, y)
self._build_model()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate)
dataset = torch.utils.data.TensorDataset(X, y)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
self.model.train()
for epoch in range(self.max_epochs):
for batch_X, batch_y in dataloader:
optimizer.zero_grad()
outputs = self.model(batch_X).squeeze()
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
return self
def predict(self, X):
X = self._prepare_data(X)
self.model.eval()
with torch.no_grad():
predictions = self.model(X).squeeze()
return predictions.numpy()
def _prepare_data(self, X, y=None):
if isinstance(X, np.ndarray):
X = torch.tensor(X, dtype=torch.float32)
if y is not None:
if isinstance(y, np.ndarray):
y = torch.tensor(y, dtype=torch.float32)
return X, y
return X
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=42)
# Convert X_train and X_test to float32
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=MLPRegressorTorch(input_size=X_train.shape[1]+1,
hidden_sizes=(20, 20, 20),
max_epochs=200,
random_state=42),
type_pi="ecdf")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_whas500()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=42)
# Convert X_train and X_test to float32
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=MLPRegressorTorch(input_size=X_train.shape[1]+1,
hidden_sizes=(20, 20, 20),
max_epochs=200,
random_state=42),
type_pi="ecdf")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
5 - Using keras (through scikeras
)
import keras
import keras.models
from scikeras.wrappers import KerasRegressor
def get_reg(meta, hidden_layer_sizes, dropout):
n_features_in_ = meta["n_features_in_"]
model = keras.models.Sequential()
model.add(keras.layers.Input(shape=(n_features_in_,)))
for hidden_layer_size in hidden_layer_sizes:
model.add(keras.layers.Dense(hidden_layer_size, activation="relu"))
model.add(keras.layers.Dropout(dropout))
model.add(keras.layers.Dense(1))
return model
reg = KerasRegressor(
model=get_reg,
loss="mse",
metrics=[keras.metrics.R2Score],
hidden_layer_sizes=(20, 20, 20),
dropout=0.1,
verbose=0,
random_state=123
)
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=reg,
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_whas500()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=reg,
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
6 - using xgboost
import xgboost as xgb
X, y = load_veterans_lung_cancer()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=xgb.XGBRegressor(),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_whas500()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=xgb.XGBRegressor(),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
7 - using lightgbm
import lightgbm as lgb
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=lgb.LGBMRegressor(verbose=-1,
random_state=42),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_whas500()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=lgb.LGBMRegressor(verbose=-1,
random_state=42),
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
8 - using Generic Boosting (mlsauce
)
import mlsauce as ms
regr_ridge = ms.GenericBoostingRegressor(ms.RidgeRegressor(reg_lambda=1e3),
verbose=0)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=regr_ridge,
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
X, y = load_whas500()
X = _encode_categorical_columns(X)
# Create a new structured array with Survival_in_days as float32
new_dtype = [('Status', '?'), ('Survival_in_days', '<f4')]
y_converted = np.array(y.tolist(), dtype=new_dtype)
X_train, X_test, y_train, y_test = train_test_split(X, y_converted,
test_size=0.2,
random_state=4)
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
event_time = [y[1] for y in y_test]
event_status = [y[0] for y in y_test]
km = kaplan_meier_estimator(event_status, event_time,
conf_type="log-log")
estimator = PISurvivalCustom(regr=regr_ridge,
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X_test.iloc[:1])
for fn in surv_funcs.mean:
plt.step(fn.x, fn(fn.x), where="post")
plt.fill_between(fn.x, surv_funcs.lower[0].y, surv_funcs.upper[0].y, alpha=0.25, color="lightblue", step="post")
plt.step(km[0], km[1], where="post", color="red", label="Kaplan-Meier")
plt.fill_between(km[0], km[2][0], km[2][1], alpha=0.25, color="pink", step="post")
plt.ylim(0, 1)
plt.show()
Comments powered by Talkyard.