28 Oct 2024 | RSS | Back to list of posts | Toggle dark mode | Hire me on Malt | Hire me on Fiverr | Hire me on Upwork
Today, give a try to Techtonique web app, a tool designed
to help you make informed, data-driven decisions using Mathematics, Statistics, Machine Learning,
and Data Visualization.
Here is a tutorial with audio, video, code, and slides: https://moudiki2.gumroad.com/l/nrhgb
Update 2024-10-29: Fixed an error, and the histogram-based is actually failing miserably. Still trying to wrap my head around it (why is it not only failing, but so badly). The original implementation of the GenericBooster
is still doing great as shown below.
A few weeks ago, I introduced a model-agnostic gradient boosting (XGBoost, LightGBM, CatBoost-like) procedure for supervised regression and classification, that can use any base learner (available in R and Python package mlsauce
):
The rationale is different from other histogram-based gradient boosting algorithms, as histograms are only used here for feature engineering of continuous features. So far, I don’t see huge differences with the original implementation of the GenericBooster
, but it’s still a work in progress. I envisage to try it out on a data set that contains a ‘higher’ mix of continuous and categorical features (as categorical features are not histogram-engineered).
Here are a few results that can give you an idea of the performance of the algorithm. Keep in mind that the models are not tuned, and that the GenericBooster
can be tuned (in addition to the boosting model’s hyperparamters) with the base learner’s hyperparameters. That makes, potentially, a lot of degrees of freedom and room for improvement/exploration.
!pip install git+https://github.com/Techtonique/mlsauce.git --verbose --upgrade --no-cache-dir
import os
import mlsauce as ms
from sklearn.datasets import load_breast_cancer, load_iris, load_wine, load_digits
from sklearn.model_selection import train_test_split
from time import time
load_models = [load_breast_cancer, load_iris, load_wine, load_digits]
for model in load_models:
data = model()
X = data.data
y= data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 13)
clf = ms.LazyBoostingClassifier(verbose=0, ignore_warnings=True, #n_jobs=2,
custom_metric=None, preprocess=False)
start = time()
models, predictioms = clf.fit(X_train, X_test, y_train, y_test, hist=True)
models2, predictioms = clf.fit(X_train, X_test, y_train, y_test, hist=False)
print(f"\nElapsed: {time() - start} seconds\n")
display(models)
display(models2)
2it [00:00, 2.27it/s]
100%|██████████| 38/38 [00:41<00:00, 1.09s/it]
2it [00:00, 5.14it/s]
100%|██████████| 38/38 [00:43<00:00, 1.14s/it]
Elapsed: 85.95083284378052 seconds
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
GenericBooster(MultiTask(TweedieRegressor)) |
0.99 |
0.99 |
0.99 |
0.99 |
1.73 |
GenericBooster(LinearRegression) |
0.99 |
0.99 |
0.99 |
0.99 |
0.37 |
GenericBooster(TransformedTargetRegressor) |
0.99 |
0.99 |
0.99 |
0.99 |
0.40 |
GenericBooster(RidgeCV) |
0.99 |
0.99 |
0.99 |
0.99 |
1.28 |
GenericBooster(Ridge) |
0.99 |
0.99 |
0.99 |
0.99 |
0.27 |
XGBClassifier |
0.96 |
0.96 |
0.96 |
0.96 |
0.50 |
RandomForestClassifier |
0.96 |
0.96 |
0.96 |
0.96 |
0.37 |
GenericBooster(ExtraTreeRegressor) |
0.94 |
0.94 |
0.94 |
0.94 |
0.40 |
GenericBooster(MultiTask(BayesianRidge)) |
0.94 |
0.93 |
0.93 |
0.94 |
4.97 |
GenericBooster(KNeighborsRegressor) |
0.87 |
0.89 |
0.89 |
0.87 |
0.70 |
GenericBooster(DecisionTreeRegressor) |
0.87 |
0.88 |
0.88 |
0.87 |
2.24 |
GenericBooster(MultiTaskElasticNet) |
0.87 |
0.79 |
0.79 |
0.86 |
0.11 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.86 |
0.79 |
0.79 |
0.85 |
1.28 |
GenericBooster(MultiTaskLasso) |
0.85 |
0.76 |
0.76 |
0.84 |
0.06 |
GenericBooster(ElasticNet) |
0.85 |
0.76 |
0.76 |
0.84 |
0.16 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.82 |
0.72 |
0.72 |
0.80 |
10.42 |
GenericBooster(Lasso) |
0.82 |
0.71 |
0.71 |
0.79 |
0.09 |
GenericBooster(LassoLars) |
0.82 |
0.71 |
0.71 |
0.79 |
0.08 |
GenericBooster(MultiTask(LinearSVR)) |
0.81 |
0.69 |
0.69 |
0.78 |
14.75 |
GenericBooster(DummyRegressor) |
0.68 |
0.50 |
0.50 |
0.56 |
0.01 |
GenericBooster(MultiTask(SGDRegressor)) |
0.50 |
0.46 |
0.46 |
0.51 |
1.67 |
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
GenericBooster(MultiTask(TweedieRegressor)) |
0.99 |
0.99 |
0.99 |
0.99 |
1.67 |
GenericBooster(LinearRegression) |
0.99 |
0.99 |
0.99 |
0.99 |
0.30 |
GenericBooster(TransformedTargetRegressor) |
0.99 |
0.99 |
0.99 |
0.99 |
0.74 |
GenericBooster(RidgeCV) |
0.99 |
0.99 |
0.99 |
0.99 |
2.77 |
GenericBooster(Ridge) |
0.99 |
0.99 |
0.99 |
0.99 |
0.28 |
XGBClassifier |
0.96 |
0.96 |
0.96 |
0.96 |
0.13 |
GenericBooster(MultiTask(BayesianRidge)) |
0.94 |
0.93 |
0.93 |
0.94 |
7.81 |
GenericBooster(ExtraTreeRegressor) |
0.94 |
0.94 |
0.94 |
0.94 |
0.23 |
RandomForestClassifier |
0.92 |
0.93 |
0.93 |
0.92 |
0.25 |
GenericBooster(KNeighborsRegressor) |
0.87 |
0.89 |
0.89 |
0.87 |
0.42 |
GenericBooster(DecisionTreeRegressor) |
0.87 |
0.88 |
0.88 |
0.87 |
0.97 |
GenericBooster(MultiTaskElasticNet) |
0.87 |
0.79 |
0.79 |
0.86 |
0.11 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.86 |
0.79 |
0.79 |
0.85 |
1.20 |
GenericBooster(MultiTaskLasso) |
0.85 |
0.76 |
0.76 |
0.84 |
0.06 |
GenericBooster(ElasticNet) |
0.85 |
0.76 |
0.76 |
0.84 |
0.09 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.82 |
0.72 |
0.72 |
0.80 |
10.57 |
GenericBooster(LassoLars) |
0.82 |
0.71 |
0.71 |
0.79 |
0.09 |
GenericBooster(Lasso) |
0.82 |
0.71 |
0.71 |
0.79 |
0.09 |
GenericBooster(MultiTask(LinearSVR)) |
0.81 |
0.69 |
0.69 |
0.78 |
14.20 |
GenericBooster(DummyRegressor) |
0.68 |
0.50 |
0.50 |
0.56 |
0.01 |
GenericBooster(MultiTask(SGDRegressor)) |
0.50 |
0.46 |
0.46 |
0.51 |
1.33 |
2it [00:00, 6.46it/s]
100%|██████████| 38/38 [00:12<00:00, 3.11it/s]
2it [00:00, 10.38it/s]
100%|██████████| 38/38 [00:11<00:00, 3.18it/s]
Elapsed: 24.71835470199585 seconds
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
GenericBooster(RidgeCV) |
1.00 |
1.00 |
None |
1.00 |
0.18 |
GenericBooster(Ridge) |
1.00 |
1.00 |
None |
1.00 |
0.14 |
GenericBooster(LinearRegression) |
0.97 |
0.97 |
None |
0.97 |
0.13 |
GenericBooster(DecisionTreeRegressor) |
0.97 |
0.97 |
None |
0.97 |
0.18 |
GenericBooster(TransformedTargetRegressor) |
0.97 |
0.97 |
None |
0.97 |
0.23 |
GenericBooster(ExtraTreeRegressor) |
0.97 |
0.97 |
None |
0.97 |
0.14 |
XGBClassifier |
0.97 |
0.97 |
None |
0.97 |
0.05 |
RandomForestClassifier |
0.93 |
0.95 |
None |
0.93 |
0.26 |
GenericBooster(KNeighborsRegressor) |
0.93 |
0.95 |
None |
0.93 |
0.27 |
GenericBooster(MultiTask(SGDRegressor)) |
0.90 |
0.92 |
None |
0.90 |
0.75 |
GenericBooster(MultiTask(TweedieRegressor)) |
0.90 |
0.92 |
None |
0.90 |
1.61 |
GenericBooster(MultiTask(LinearSVR)) |
0.80 |
0.85 |
None |
0.80 |
2.15 |
GenericBooster(MultiTaskElasticNet) |
0.80 |
0.85 |
None |
0.80 |
0.07 |
GenericBooster(MultiTask(BayesianRidge)) |
0.63 |
0.72 |
None |
0.57 |
2.42 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.57 |
0.67 |
None |
0.45 |
1.05 |
GenericBooster(Lars) |
0.50 |
0.46 |
None |
0.48 |
0.59 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.43 |
0.33 |
None |
0.26 |
2.19 |
GenericBooster(LassoLars) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
GenericBooster(MultiTaskLasso) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
GenericBooster(Lasso) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
GenericBooster(ElasticNet) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
GenericBooster(DummyRegressor) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
GenericBooster(RidgeCV) |
1.00 |
1.00 |
None |
1.00 |
0.16 |
GenericBooster(Ridge) |
1.00 |
1.00 |
None |
1.00 |
0.16 |
RandomForestClassifier |
0.97 |
0.97 |
None |
0.97 |
0.15 |
GenericBooster(LinearRegression) |
0.97 |
0.97 |
None |
0.97 |
0.13 |
GenericBooster(DecisionTreeRegressor) |
0.97 |
0.97 |
None |
0.97 |
0.16 |
GenericBooster(TransformedTargetRegressor) |
0.97 |
0.97 |
None |
0.97 |
0.24 |
GenericBooster(ExtraTreeRegressor) |
0.97 |
0.97 |
None |
0.97 |
0.14 |
XGBClassifier |
0.97 |
0.97 |
None |
0.97 |
0.04 |
GenericBooster(KNeighborsRegressor) |
0.93 |
0.95 |
None |
0.93 |
0.28 |
GenericBooster(MultiTask(SGDRegressor)) |
0.90 |
0.92 |
None |
0.90 |
0.78 |
GenericBooster(MultiTask(TweedieRegressor)) |
0.90 |
0.92 |
None |
0.90 |
1.35 |
GenericBooster(MultiTask(LinearSVR)) |
0.80 |
0.85 |
None |
0.80 |
2.15 |
GenericBooster(MultiTaskElasticNet) |
0.80 |
0.85 |
None |
0.80 |
0.07 |
GenericBooster(MultiTask(BayesianRidge)) |
0.63 |
0.72 |
None |
0.57 |
1.81 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.57 |
0.67 |
None |
0.45 |
1.21 |
GenericBooster(Lars) |
0.50 |
0.46 |
None |
0.48 |
0.58 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.43 |
0.33 |
None |
0.26 |
2.63 |
GenericBooster(LassoLars) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
GenericBooster(MultiTaskLasso) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
GenericBooster(Lasso) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
GenericBooster(ElasticNet) |
0.27 |
0.33 |
None |
0.11 |
0.02 |
GenericBooster(DummyRegressor) |
0.27 |
0.33 |
None |
0.11 |
0.01 |
2it [00:00, 5.45it/s]
100%|██████████| 38/38 [00:14<00:00, 2.63it/s]
2it [00:00, 9.26it/s]
100%|██████████| 38/38 [00:14<00:00, 2.58it/s]
Elapsed: 29.76035761833191 seconds
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
RandomForestClassifier |
1.00 |
1.00 |
None |
1.00 |
0.30 |
GenericBooster(ExtraTreeRegressor) |
1.00 |
1.00 |
None |
1.00 |
0.17 |
GenericBooster(TransformedTargetRegressor) |
1.00 |
1.00 |
None |
1.00 |
0.26 |
GenericBooster(RidgeCV) |
1.00 |
1.00 |
None |
1.00 |
0.23 |
GenericBooster(Ridge) |
1.00 |
1.00 |
None |
1.00 |
0.15 |
GenericBooster(LinearRegression) |
1.00 |
1.00 |
None |
1.00 |
0.15 |
XGBClassifier |
0.97 |
0.96 |
None |
0.97 |
0.06 |
GenericBooster(MultiTask(SGDRegressor)) |
0.97 |
0.98 |
None |
0.97 |
1.10 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.97 |
0.98 |
None |
0.97 |
1.18 |
GenericBooster(MultiTask(LinearSVR)) |
0.97 |
0.98 |
None |
0.97 |
3.71 |
GenericBooster(MultiTask(BayesianRidge)) |
0.97 |
0.98 |
None |
0.97 |
1.86 |
GenericBooster(MultiTask(TweedieRegressor)) |
0.97 |
0.98 |
None |
0.97 |
1.39 |
GenericBooster(Lars) |
0.94 |
0.94 |
None |
0.95 |
0.93 |
GenericBooster(KNeighborsRegressor) |
0.92 |
0.93 |
None |
0.92 |
0.19 |
GenericBooster(DecisionTreeRegressor) |
0.92 |
0.92 |
None |
0.92 |
0.22 |
GenericBooster(MultiTaskElasticNet) |
0.69 |
0.61 |
None |
0.61 |
0.03 |
GenericBooster(ElasticNet) |
0.61 |
0.53 |
None |
0.53 |
0.05 |
GenericBooster(MultiTaskLasso) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(LassoLars) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(Lasso) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(DummyRegressor) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.25 |
0.33 |
None |
0.10 |
2.73 |
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
RandomForestClassifier |
1.00 |
1.00 |
None |
1.00 |
0.15 |
GenericBooster(ExtraTreeRegressor) |
1.00 |
1.00 |
None |
1.00 |
0.16 |
GenericBooster(TransformedTargetRegressor) |
1.00 |
1.00 |
None |
1.00 |
0.24 |
GenericBooster(RidgeCV) |
1.00 |
1.00 |
None |
1.00 |
0.22 |
GenericBooster(Ridge) |
1.00 |
1.00 |
None |
1.00 |
0.16 |
GenericBooster(LinearRegression) |
1.00 |
1.00 |
None |
1.00 |
0.15 |
XGBClassifier |
0.97 |
0.96 |
None |
0.97 |
0.06 |
GenericBooster(MultiTask(SGDRegressor)) |
0.97 |
0.98 |
None |
0.97 |
0.84 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.97 |
0.98 |
None |
0.97 |
1.18 |
GenericBooster(MultiTask(LinearSVR)) |
0.97 |
0.98 |
None |
0.97 |
3.41 |
GenericBooster(MultiTask(BayesianRidge)) |
0.97 |
0.98 |
None |
0.97 |
2.15 |
GenericBooster(MultiTask(TweedieRegressor)) |
0.97 |
0.98 |
None |
0.97 |
1.91 |
GenericBooster(Lars) |
0.94 |
0.94 |
None |
0.95 |
0.93 |
GenericBooster(KNeighborsRegressor) |
0.92 |
0.93 |
None |
0.92 |
0.20 |
GenericBooster(DecisionTreeRegressor) |
0.92 |
0.92 |
None |
0.92 |
0.23 |
GenericBooster(MultiTaskElasticNet) |
0.69 |
0.61 |
None |
0.61 |
0.03 |
GenericBooster(ElasticNet) |
0.61 |
0.53 |
None |
0.53 |
0.04 |
GenericBooster(MultiTaskLasso) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(LassoLars) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(Lasso) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(DummyRegressor) |
0.42 |
0.33 |
None |
0.25 |
0.01 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.25 |
0.33 |
None |
0.10 |
2.78 |
2it [00:01, 1.90it/s]
100%|██████████| 38/38 [09:30<00:00, 15.02s/it]
2it [00:01, 1.03it/s]
100%|██████████| 38/38 [09:27<00:00, 14.94s/it]
Elapsed: 1141.7054164409637 seconds
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
RandomForestClassifier |
0.97 |
0.97 |
None |
0.97 |
0.56 |
XGBClassifier |
0.97 |
0.97 |
None |
0.97 |
0.50 |
GenericBooster(ExtraTreeRegressor) |
0.96 |
0.96 |
None |
0.96 |
1.75 |
GenericBooster(KNeighborsRegressor) |
0.95 |
0.95 |
None |
0.95 |
4.34 |
GenericBooster(LinearRegression) |
0.94 |
0.94 |
None |
0.94 |
4.47 |
GenericBooster(MultiTask(BayesianRidge)) |
0.94 |
0.94 |
None |
0.94 |
51.97 |
GenericBooster(TransformedTargetRegressor) |
0.94 |
0.94 |
None |
0.94 |
2.54 |
GenericBooster(RidgeCV) |
0.94 |
0.94 |
None |
0.94 |
4.55 |
GenericBooster(Ridge) |
0.94 |
0.94 |
None |
0.94 |
0.63 |
GenericBooster(MultiTask(TweedieRegressor)) |
0.93 |
0.93 |
None |
0.93 |
13.86 |
GenericBooster(DecisionTreeRegressor) |
0.88 |
0.88 |
None |
0.88 |
6.14 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.79 |
0.79 |
None |
0.80 |
13.46 |
GenericBooster(MultiTask(LinearSVR)) |
0.37 |
0.39 |
None |
0.26 |
297.07 |
GenericBooster(Lars) |
0.20 |
0.20 |
None |
0.21 |
19.23 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.12 |
0.10 |
None |
0.03 |
140.91 |
GenericBooster(MultiTask(SGDRegressor)) |
0.10 |
0.10 |
None |
0.06 |
9.46 |
GenericBooster(LassoLars) |
0.07 |
0.10 |
None |
0.01 |
0.05 |
GenericBooster(Lasso) |
0.07 |
0.10 |
None |
0.01 |
0.07 |
GenericBooster(MultiTaskLasso) |
0.07 |
0.10 |
None |
0.01 |
0.04 |
GenericBooster(ElasticNet) |
0.07 |
0.10 |
None |
0.01 |
0.03 |
GenericBooster(DummyRegressor) |
0.07 |
0.10 |
None |
0.01 |
0.02 |
GenericBooster(MultiTaskElasticNet) |
0.07 |
0.10 |
None |
0.01 |
0.05 |
|
Accuracy |
Balanced Accuracy |
ROC AUC |
F1 Score |
Time Taken |
Model |
|
|
|
|
|
RandomForestClassifier |
0.97 |
0.97 |
None |
0.97 |
0.67 |
XGBClassifier |
0.97 |
0.97 |
None |
0.97 |
1.27 |
GenericBooster(ExtraTreeRegressor) |
0.96 |
0.96 |
None |
0.96 |
1.69 |
GenericBooster(KNeighborsRegressor) |
0.95 |
0.95 |
None |
0.95 |
4.76 |
GenericBooster(LinearRegression) |
0.94 |
0.94 |
None |
0.94 |
2.01 |
GenericBooster(MultiTask(BayesianRidge)) |
0.94 |
0.94 |
None |
0.94 |
46.87 |
GenericBooster(TransformedTargetRegressor) |
0.94 |
0.94 |
None |
0.94 |
5.40 |
GenericBooster(RidgeCV) |
0.94 |
0.94 |
None |
0.94 |
3.93 |
GenericBooster(Ridge) |
0.94 |
0.94 |
None |
0.94 |
0.60 |
GenericBooster(MultiTask(TweedieRegressor)) |
0.93 |
0.93 |
None |
0.93 |
14.96 |
GenericBooster(DecisionTreeRegressor) |
0.88 |
0.88 |
None |
0.88 |
4.12 |
GenericBooster(MultiTask(PassiveAggressiveRegressor)) |
0.79 |
0.79 |
None |
0.80 |
12.68 |
GenericBooster(MultiTask(LinearSVR)) |
0.37 |
0.39 |
None |
0.26 |
294.88 |
GenericBooster(Lars) |
0.20 |
0.20 |
None |
0.21 |
19.40 |
GenericBooster(MultiTask(QuantileRegressor)) |
0.12 |
0.10 |
None |
0.03 |
145.91 |
GenericBooster(MultiTask(SGDRegressor)) |
0.10 |
0.10 |
None |
0.06 |
10.30 |
GenericBooster(LassoLars) |
0.07 |
0.10 |
None |
0.01 |
0.02 |
GenericBooster(Lasso) |
0.07 |
0.10 |
None |
0.01 |
0.03 |
GenericBooster(MultiTaskLasso) |
0.07 |
0.10 |
None |
0.01 |
0.03 |
GenericBooster(ElasticNet) |
0.07 |
0.10 |
None |
0.01 |
0.03 |
GenericBooster(DummyRegressor) |
0.07 |
0.10 |
None |
0.01 |
0.02 |
GenericBooster(MultiTaskElasticNet) |
0.07 |
0.10 |
None |
0.01 |
0.03 |
Comments powered by Talkyard.