During the past few weeks, I’ve been adapting a Python version of the (seemingly abandoned?) official Stanford GLMNet Python package. Don’t try to build a programming interface on it yet, as it’s still “moving”.

GLMNet implements the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, poisson regression and the cox model. My implementation is faithful to the R Fortran-based one, but:

  • uses numpy instead of scipy
  • uses scikit-learn style, with a main class GLMNet having methods fit and predict

If (like me) you’re fond of GLMNet and scikit-learn style, you may love this package. Here, I illustrate the usage of this “new” package, along with its use within the Techtonique ecosystem (nnetsauce and mlsauce).

!pip install nnetsauce
!pip install git+https://github.com/Techtonique/mlsauce.git --verbose --upgrade --no-cache-dir
!pip install git+https://github.com/thierrymoudiki/glmnetforpython.git --verbose --upgrade --no-cache-dir

1 - GLMNet

1 - 1 GLMNet Classification

import nnetsauce as ns
import mlsauce as ms
import numpy as np
import glmnetforpython as glmnet
from sklearn.datasets import load_breast_cancer, load_iris, load_wine
from sklearn.model_selection import train_test_split
from time import time


datasets = [load_iris, load_breast_cancer, load_wine]

for dataset in datasets:

    print(f"\n\n dataset: {dataset.__name__} -------------------")

    X, y = dataset(return_X_y=True)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)

    clf = glmnet.GLMNet(family="multinomial")

    print(clf.get_params())

    start = time()
    clf.fit(X_train, y_train)
    print(f"elapsed: {time() - start}")

    #clf.print()
    #print(clf.score(X_test, y_test))
    preds = clf.predict(X_test, ptype="class")
    print(preds)

    print("accuracy: ", np.mean(preds == y_test))
     dataset: load_iris -------------------
    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
    elapsed: 0.5259675979614258
    [1. 2. 2. 1. 0. 2. 1. 0. 0. 1. 2. 0. 1. 2. 2. 2. 0. 0. 1. 0. 0. 1. 0. 2.
     0. 0. 0. 2. 2. 0.]
    accuracy:  0.9666666666666667
    
    
     dataset: load_breast_cancer -------------------
    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
    elapsed: 1.3695988655090332
    [1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1.
     1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 1. 0. 0.
     1. 0. 0. 0. 1. 1. 1. 0. 1. 0. 0. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
     1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]
    accuracy:  0.956140350877193
    
    
     dataset: load_wine -------------------
    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
    elapsed: 0.1249077320098877
    [2. 1. 2. 1. 1. 2. 0. 2. 2. 1. 2. 2. 2. 0. 0. 2. 1. 1. 0. 1. 1. 2. 2. 2.
     1. 2. 2. 1. 0. 0. 0. 0. 2. 1. 2. 1.]
    accuracy:  0.9722222222222222

1 - 2 GLMNet Regression

import numpy as np
import os
import sys
import glmnetforpython as glmnet
from sklearn.datasets import load_diabetes, fetch_california_housing
from sklearn.model_selection import train_test_split
from time import time


datasets = [load_diabetes, fetch_california_housing]

for dataset in datasets:

    print(f"\n\n dataset: {dataset.__name__} -------------------")

    X, y = dataset(return_X_y=True)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

    regr = glmnet.GLMNet()

    print(regr.get_params())

    start = time()
    regr.fit(X_train, y_train)
    print(f"elapsed: {time() - start}")

    regr.print()

    print(regr.predict(X_test, s=0.1))

    print(regr.predict(X_test, s=np.asarray([0.1, 0.5])))

    print(regr.predict(X_test, s=0.5))

    start = time()
    res_cvglmnet = regr.cvglmnet(X_train, y_train)
    print(f"elapsed: {time() - start}")

    print("\n best lambda: ", res_cvglmnet.lambda_min)
    print("\n best lambda std. dev: ", res_cvglmnet.lambda_1se)
    print("\n best coef: ", res_cvglmnet.best_coef)
    print("\n best GLMNet: ", res_cvglmnet.cvfit)

     dataset: load_diabetes -------------------
    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'gaussian', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
    elapsed: 0.003544330596923828
    	 df 	 %dev 	 lambdau
    
    0 	 0.000000 	 0.000000 	 44.034491
    1 	 1.000000 	 0.056410 	 40.122588
    2 	 2.000000 	 0.118800 	 36.558208
    3 	 2.000000 	 0.173050 	 33.310478
    4 	 2.000000 	 0.218089 	 30.351267
    5 	 2.000000 	 0.255485 	 27.654944
    6 	 2.000000 	 0.286528 	 25.198155
    7 	 2.000000 	 0.312300 	 22.959620
    8 	 2.000000 	 0.333697 	 20.919951
    9 	 3.000000 	 0.354121 	 19.061480
    10 	 4.000000 	 0.373003 	 17.368111
    11 	 4.000000 	 0.390322 	 15.825176
    12 	 4.000000 	 0.404704 	 14.419311
    13 	 4.000000 	 0.416644 	 13.138339
    14 	 4.000000 	 0.426556 	 11.971165
    15 	 4.000000 	 0.434786 	 10.907680
    16 	 4.000000 	 0.441619 	 9.938671
    17 	 5.000000 	 0.447381 	 9.055747
    18 	 5.000000 	 0.452319 	 8.251260
    19 	 5.000000 	 0.456422 	 7.518240
    20 	 5.000000 	 0.459828 	 6.850341
    21 	 5.000000 	 0.462655 	 6.241775
    22 	 5.000000 	 0.465003 	 5.687273
    23 	 6.000000 	 0.468916 	 5.182032
    24 	 6.000000 	 0.472756 	 4.721674
    25 	 6.000000 	 0.475938 	 4.302214
    26 	 6.000000 	 0.478579 	 3.920017
    27 	 6.000000 	 0.480772 	 3.571773
    28 	 7.000000 	 0.482661 	 3.254467
    29 	 7.000000 	 0.485063 	 2.965349
    30 	 7.000000 	 0.487080 	 2.701916
    31 	 7.000000 	 0.488751 	 2.461885
    32 	 7.000000 	 0.490137 	 2.243178
    33 	 7.000000 	 0.491289 	 2.043900
    34 	 7.000000 	 0.492244 	 1.862326
    35 	 7.000000 	 0.493038 	 1.696882
    36 	 7.000000 	 0.493697 	 1.546135
    37 	 8.000000 	 0.494444 	 1.408781
    38 	 8.000000 	 0.495256 	 1.283629
    39 	 8.000000 	 0.495927 	 1.169595
    40 	 8.000000 	 0.496489 	 1.065691
    41 	 8.000000 	 0.496952 	 0.971018
    42 	 8.000000 	 0.497335 	 0.884756
    43 	 8.000000 	 0.497659 	 0.806156
    44 	 8.000000 	 0.497924 	 0.734540
    45 	 8.000000 	 0.498143 	 0.669285
    46 	 8.000000 	 0.498329 	 0.609828
    47 	 8.000000 	 0.498481 	 0.555652
    48 	 8.000000 	 0.498610 	 0.506290
    49 	 8.000000 	 0.498715 	 0.461312
    50 	 8.000000 	 0.498805 	 0.420331
    51 	 8.000000 	 0.498877 	 0.382990
    52 	 8.000000 	 0.498939 	 0.348966
    53 	 8.000000 	 0.498989 	 0.317965
    54 	 8.000000 	 0.499032 	 0.289718
    55 	 9.000000 	 0.499069 	 0.263980
    56 	 9.000000 	 0.499392 	 0.240529
    57 	 9.000000 	 0.499741 	 0.219161
    58 	 9.000000 	 0.500032 	 0.199691
    59 	 9.000000 	 0.500272 	 0.181951
    60 	 9.000000 	 0.500476 	 0.165787
    61 	 9.000000 	 0.500646 	 0.151059
    62 	 9.000000 	 0.500787 	 0.137639
    63 	 8.000000 	 0.500861 	 0.125412
    64 	 9.000000 	 0.500891 	 0.114271
    65 	 9.000000 	 0.500921 	 0.104119
    66 	 9.000000 	 0.500946 	 0.094869
    67 	 9.000000 	 0.500966 	 0.086441
    68 	 10.000000 	 0.500985 	 0.078762
    69 	 10.000000 	 0.501074 	 0.071765
    70 	 10.000000 	 0.501148 	 0.065390
    71 	 10.000000 	 0.501208 	 0.059581
    72 	 10.000000 	 0.501261 	 0.054288
    73 	 10.000000 	 0.501303 	 0.049465
    74 	 10.000000 	 0.501340 	 0.045071
    75 	 10.000000 	 0.501371 	 0.041067
    76 	 10.000000 	 0.501396 	 0.037418
    77 	 10.000000 	 0.501418 	 0.034094
    78 	 10.000000 	 0.501436 	 0.031065
    79 	 10.000000 	 0.501452 	 0.028306
    80 	 10.000000 	 0.501466 	 0.025791
    81 	 10.000000 	 0.501477 	 0.023500
    82 	 10.000000 	 0.501486 	 0.021412
    83 	 10.000000 	 0.501495 	 0.019510
    84 	 10.000000 	 0.501501 	 0.017777
    85 	 10.000000 	 0.501507 	 0.016198
    86 	 10.000000 	 0.501512 	 0.014759
    87 	 10.000000 	 0.501517 	 0.013447
    [161.26225363 153.40808479 226.88078039 163.480388   158.15906743
     138.70495293 252.60833458 107.20179977 107.04120812 111.4621737
     123.02831339 182.46487521 161.8259466  202.19109973 222.70276584
     172.29337663 108.23998068 144.9482381  176.11555866 191.67293859
     163.44023323 231.8947646  140.21508949  75.13660039 129.39763652
     188.26182192 100.80880331 101.63988186 157.52887579 185.93073996
      85.10969035 238.43828572 208.13649047 209.71355938 198.52425274
      95.48735993  93.58588193  98.38410955 225.11428814 101.19808037
     193.69596077  81.44887372 102.8093431  146.00065311 110.88937281
     215.06701174  79.87947637  77.58243533 101.06682798 217.30259906
      70.16241913 116.23582088 177.21944649 195.88268542 138.92178841
     198.65554716 219.68568399 169.97366232 192.47857773 189.04428441
     138.71921407 121.43624221 233.40434688 202.68154217 190.88486154
      42.03060013  62.01800127 159.28979811 126.65978845  86.64871155
     136.58228326  76.93411617 141.41235614 199.19748035 120.79645249
     173.18692022 146.96993898 139.31000819  99.86313284  83.63232759
      61.45995805 159.5304213  120.28229729 225.93625573 286.05353932
     165.66169186 197.95421215  70.40035793 139.89076625]
    [[161.26225363 160.79263694]
     [153.40808479 150.6281287 ]
     [226.88078039 225.5710481 ]
     [163.480388   161.80700641]
     [158.15906743 157.71369432]
     [138.70495293 144.58961694]
     [252.60833458 250.39569639]
     [107.20179977 110.67344587]
     [107.04120812 111.21584102]
     [111.4621737  107.93161795]
     [123.02831339 122.34617434]
     [182.46487521 180.55849115]
     [161.8259466  161.4535835 ]
     [202.19109973 200.49417412]
     [222.70276584 229.60354304]
     [172.29337663 170.57681745]
     [108.23998068 109.09703513]
     [144.9482381  143.71605666]
     [176.11555866 177.00946867]
     [191.67293859 194.23710327]
     [163.44023323 161.7697504 ]
     [231.8947646  229.71549579]
     [140.21508949 140.591871  ]
     [ 75.13660039  78.02802694]
     [129.39763652 129.5053364 ]
     [188.26182192 186.58248135]
     [100.80880331 102.6960668 ]
     [101.63988186 104.20365368]
     [157.52887579 156.12372213]
     [185.93073996 187.20901614]
     [ 85.10969035  89.82145958]
     [238.43828572 237.95082988]
     [208.13649047 207.73770948]
     [209.71355938 209.32169425]
     [198.52425274 197.67298512]
     [ 95.48735993  96.07154965]
     [ 93.58588193  95.09805607]
     [ 98.38410955  97.25266832]
     [225.11428814 220.52646948]
     [101.19808037 101.27641956]
     [193.69596077 194.77086843]
     [ 81.44887372  81.25151312]
     [102.8093431  102.64887002]
     [146.00065311 144.94838244]
     [110.88937281 110.25258101]
     [215.06701174 213.51721996]
     [ 79.87947637  79.10616278]
     [ 77.58243533  81.51256193]
     [101.06682798 103.20741885]
     [217.30259906 216.7643487 ]
     [ 70.16241913  72.0598882 ]
     [116.23582088 119.05445336]
     [177.21944649 178.45613256]
     [195.88268542 197.31526195]
     [138.92178841 137.70888526]
     [198.65554716 200.13140539]
     [219.68568399 218.50018565]
     [169.97366232 169.49700466]
     [192.47857773 188.32727388]
     [189.04428441 186.73052546]
     [138.71921407 140.07357784]
     [121.43624221 121.14922477]
     [233.40434688 231.63901622]
     [202.68154217 201.3077663 ]
     [190.88486154 189.74608267]
     [ 42.03060013  46.44945536]
     [ 62.01800127  63.00668405]
     [159.28979811 158.37093056]
     [126.65978845 126.26280796]
     [ 86.64871155  87.59938665]
     [136.58228326 136.23598795]
     [ 76.93411617  80.10973443]
     [141.41235614 140.69343212]
     [199.19748035 196.9680135 ]
     [120.79645249 119.32968814]
     [173.18692022 170.83211938]
     [146.96993898 146.07744866]
     [139.31000819 139.45758571]
     [ 99.86313284  99.37633812]
     [ 83.63232759  85.05298366]
     [ 61.45995805  64.04582025]
     [159.5304213  159.08368556]
     [120.28229729 120.78108123]
     [225.93625573 224.25244938]
     [286.05353932 287.72165668]
     [165.66169186 167.91861665]
     [197.95421215 194.94689188]
     [ 70.40035793  71.35611103]
     [139.89076625 139.15500257]]
    [160.79263694 150.6281287  225.5710481  161.80700641 157.71369432
     144.58961694 250.39569639 110.67344587 111.21584102 107.93161795
     122.34617434 180.55849115 161.4535835  200.49417412 229.60354304
     170.57681745 109.09703513 143.71605666 177.00946867 194.23710327
     161.7697504  229.71549579 140.591871    78.02802694 129.5053364
     186.58248135 102.6960668  104.20365368 156.12372213 187.20901614
      89.82145958 237.95082988 207.73770948 209.32169425 197.67298512
      96.07154965  95.09805607  97.25266832 220.52646948 101.27641956
     194.77086843  81.25151312 102.64887002 144.94838244 110.25258101
     213.51721996  79.10616278  81.51256193 103.20741885 216.7643487
      72.0598882  119.05445336 178.45613256 197.31526195 137.70888526
     200.13140539 218.50018565 169.49700466 188.32727388 186.73052546
     140.07357784 121.14922477 231.63901622 201.3077663  189.74608267
      46.44945536  63.00668405 158.37093056 126.26280796  87.59938665
     136.23598795  80.10973443 140.69343212 196.9680135  119.32968814
     170.83211938 146.07744866 139.45758571  99.37633812  85.05298366
      64.04582025 159.08368556 120.78108123 224.25244938 287.72165668
     167.91861665 194.94689188  71.35611103 139.15500257]
    elapsed: 0.021459341049194336
    
     best lambda:  1.2836287759411216
    
     best lambda std. dev:  7.518240463343744
    
     best coef:  [ 152.36008914    0.            0.          478.69081702  163.09825002
        0.            0.         -127.63723154    0.          383.45857834
       14.02212484]
    
     best GLMNet:  {'lambdau': array([4.40344909e+01, 4.01225881e+01, 3.65582080e+01, 3.33104775e+01,
           3.03512665e+01, 2.76549436e+01, 2.51981547e+01, 2.29596201e+01,
           2.09199507e+01, 1.90614799e+01, 1.73681106e+01, 1.58251755e+01,
           1.44193105e+01, 1.31383387e+01, 1.19711649e+01, 1.09076796e+01,
           9.93867143e+00, 9.05574725e+00, 8.25125963e+00, 7.51824046e+00,
           6.85034070e+00, 6.24177531e+00, 5.68727320e+00, 5.18203152e+00,
           4.72167412e+00, 4.30221361e+00, 3.92001681e+00, 3.57177332e+00,
           3.25446682e+00, 2.96534896e+00, 2.70191553e+00, 2.46188480e+00,
           2.24317774e+00, 2.04390001e+00, 1.86232557e+00, 1.69688170e+00,
           1.54613540e+00, 1.40878100e+00, 1.28362878e+00, 1.16959473e+00,
           1.06569116e+00, 9.71018095e-01, 8.84755524e-01, 8.06156282e-01,
           7.34539579e-01, 6.69285108e-01, 6.09827663e-01, 5.55652254e-01,
           5.06289640e-01, 4.61312263e-01, 4.20330553e-01, 3.82989545e-01,
           3.48965810e-01, 3.17964649e-01, 2.89717546e-01, 2.63979838e-01,
           2.40528596e-01, 2.19160699e-01, 1.99691066e-01, 1.81951062e-01,
           1.65787032e-01, 1.51058969e-01, 1.37639306e-01, 1.25411810e-01,
           1.14270570e-01, 1.04119088e-01, 9.48694348e-02, 8.64414957e-02,
           7.87622714e-02, 7.17652483e-02, 6.53898214e-02, 5.95807699e-02,
           5.42877785e-02, 4.94650019e-02, 4.50706675e-02, 4.10667136e-02,
           3.74184599e-02, 3.40943071e-02, 3.10654628e-02, 2.83056927e-02,
           2.57910930e-02, 2.34998834e-02, 2.14122185e-02, 1.95100160e-02,
           1.77768000e-02, 1.61975581e-02, 1.47586116e-02, 1.34474973e-02]), 'cvm': array([5849.67888044, 5588.13049574, 5237.68523549, 4913.35994927,
           4643.97138541, 4420.18846237, 4234.28760402, 4079.94561166,
           3953.4266667 , 3843.20670735, 3742.11421001, 3650.89110401,
           3567.12685974, 3496.28344973, 3438.17453542, 3390.16054415,
           3350.74498364, 3318.09382761, 3291.04560008, 3268.40981966,
           3249.56159518, 3235.42351215, 3224.36750318, 3210.81451391,
           3195.03055142, 3182.43023807, 3170.41713324, 3160.98874011,
           3153.61834888, 3147.36615655, 3140.58675366, 3134.53307657,
           3126.70250974, 3121.53432349, 3118.77235699, 3117.224526  ,
           3116.5750121 , 3116.07320448, 3115.6035719 , 3115.63220558,
           3116.16432467, 3116.61109199, 3116.30815949, 3116.14506076,
           3116.23491199, 3116.51194066, 3117.07327289, 3117.66910598,
           3118.28730793, 3118.94059329, 3119.58984965, 3120.29866814,
           3122.45940284, 3124.65303008, 3126.52180218, 3127.45737901,
           3128.23057335, 3128.3594194 , 3128.33377776, 3127.73013801,
           3127.46559483, 3126.80867588, 3125.85726821, 3125.28303452,
           3124.84520112, 3124.63312595, 3124.43410757, 3124.32847712,
           3124.23076662, 3124.18911129, 3124.06737071, 3124.09365713,
           3124.14154577, 3124.18800616, 3124.32158173, 3124.43107133,
           3124.48930905, 3124.54190509, 3124.61269842, 3124.64999794,
           3124.63934723, 3124.60634785, 3124.59003554, 3124.58808782,
           3124.56949869, 3124.55185597, 3124.55864693, 3124.55978034]), 'cvsd': array([259.52792143, 248.75823371, 221.46767784, 196.31833834,
           177.94632187, 165.15950248, 156.81416851, 151.85850454,
           149.5689093 , 150.20248582, 149.67202475, 146.56506657,
           143.00853209, 140.60041047, 138.55782035, 136.8510055 ,
           135.41484385, 134.23857211, 133.26532408, 132.2940369 ,
           131.49659758, 130.83158262, 130.54053885, 130.02800433,
           129.85450444, 130.97322891, 133.21473862, 135.58414859,
           138.00196431, 140.50827777, 143.37107165, 145.89654308,
           148.34884887, 150.24805302, 152.2145693 , 154.10961339,
           155.93288424, 157.76716921, 159.63011092, 161.33532503,
           162.88557649, 164.32062807, 165.470281  , 166.54562968,
           167.54645567, 168.49635186, 169.37581278, 170.17848841,
           170.94950123, 171.65270522, 172.31624765, 172.88013735,
           172.80109307, 172.76638875, 172.75274784, 173.02037182,
           173.2886591 , 173.4866617 , 173.69450463, 173.79827944,
           173.43628185, 172.75611616, 172.21856656, 171.70858949,
           171.08574087, 170.55631258, 170.09854581, 169.68475556,
           169.32167531, 168.99748594, 168.74915863, 168.50227099,
           168.28568613, 168.08332938, 167.91550145, 167.77407306,
           167.65195892, 167.54167529, 167.44368359, 167.34059865,
           167.23770408, 167.14209302, 167.05532325, 166.97480747,
           166.90199522, 166.83948792, 166.77940688, 166.7253628 ]), 'cvup': array([6109.20680187, 5836.88872945, 5459.15291333, 5109.67828761,
           4821.91770728, 4585.34796485, 4391.10177253, 4231.8041162 ,
           4102.995576  , 3993.40919317, 3891.78623476, 3797.45617058,
           3710.13539183, 3636.8838602 , 3576.73235577, 3527.01154965,
           3486.15982749, 3452.33239972, 3424.31092416, 3400.70385656,
           3381.05819276, 3366.25509477, 3354.90804202, 3340.84251824,
           3324.88505586, 3313.40346698, 3303.63187186, 3296.5728887 ,
           3291.62031319, 3287.87443432, 3283.95782531, 3280.42961965,
           3275.05135861, 3271.7823765 , 3270.9869263 , 3271.3341394 ,
           3272.50789634, 3273.84037369, 3275.23368282, 3276.96753061,
           3279.04990117, 3280.93172006, 3281.77844048, 3282.69069045,
           3283.78136765, 3285.00829252, 3286.44908566, 3287.84759439,
           3289.23680916, 3290.59329851, 3291.9060973 , 3293.17880549,
           3295.26049591, 3297.41941883, 3299.27455002, 3300.47775083,
           3301.51923245, 3301.8460811 , 3302.02828239, 3301.52841745,
           3300.90187668, 3299.56479204, 3298.07583477, 3296.99162401,
           3295.93094198, 3295.18943853, 3294.53265338, 3294.01323268,
           3293.55244193, 3293.18659723, 3292.81652934, 3292.59592812,
           3292.4272319 , 3292.27133554, 3292.23708318, 3292.2051444 ,
           3292.14126797, 3292.08358038, 3292.05638201, 3291.99059659,
           3291.87705131, 3291.74844088, 3291.64535879, 3291.56289529,
           3291.47149391, 3291.39134388, 3291.33805381, 3291.28514314]), 'cvlo': array([5590.15095901, 5339.37226204, 5016.21755765, 4717.04161093,
           4466.02506353, 4255.0289599 , 4077.47343551, 3928.08710712,
           3803.85775741, 3693.00422154, 3592.44218526, 3504.32603744,
           3424.11832765, 3355.68303927, 3299.61671507, 3253.30953865,
           3215.33013978, 3183.85525549, 3157.78027601, 3136.11578276,
           3118.0649976 , 3104.59192953, 3093.82696433, 3080.78650958,
           3065.17604697, 3051.45700916, 3037.20239462, 3025.40459152,
           3015.61638456, 3006.85787878, 2997.21568202, 2988.63653348,
           2978.35366087, 2971.28627047, 2966.55778769, 2963.11491261,
           2960.64212786, 2958.30603527, 2955.97346098, 2954.29688055,
           2953.27874818, 2952.29046392, 2950.83787849, 2949.59943108,
           2948.68845632, 2948.0155888 , 2947.69746011, 2947.49061756,
           2947.3378067 , 2947.28788807, 2947.27360201, 2947.41853078,
           2949.65830978, 2951.88664133, 2953.76905433, 2954.43700719,
           2954.94191425, 2954.87275769, 2954.63927313, 2953.93185857,
           2954.02931298, 2954.05255971, 2953.63870164, 2953.57444503,
           2953.75946025, 2954.07681336, 2954.33556176, 2954.64372156,
           2954.90909131, 2955.19162535, 2955.31821208, 2955.59138614,
           2955.85585964, 2956.10467679, 2956.40608028, 2956.65699827,
           2956.83735013, 2957.0002298 , 2957.16901484, 2957.30939929,
           2957.40164314, 2957.46425483, 2957.5347123 , 2957.61328035,
           2957.66750348, 2957.71236805, 2957.77924005, 2957.83441753]), 'nzero': array([ 0,  1,  2,  2,  2,  2,  2,  2,  2,  3,  4,  4,  4,  4,  4,  4,  4,
            5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  7,  7,
            7,  7,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,
            8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  8,  9,  9,  9,  9,
           10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
           10, 10, 10]), 'name': 'Mean-Squared Error', 'glmnet_fit': {'a0': array([152.42776204, 152.42566409, 152.43276797, 152.44073179,
           152.44798822, 152.45459811, 152.46062269, 152.46611206,
           152.47111377, 152.47445162, 152.47048801, 152.45602272,
           152.44285433, 152.43085578, 152.41992316, 152.40996176,
           152.4008853 , 152.38972315, 152.37419946, 152.36008914,
           152.3472322 , 152.33551743, 152.32484337, 152.31445325,
           152.30457294, 152.29565898, 152.2875366 , 152.28013579,
           152.27233919, 152.25527491, 152.23909998, 152.22445076,
           152.2111053 , 152.19894546, 152.18786587, 152.17777057,
           152.1685721 , 152.15730549, 152.14410824, 152.13217008,
           152.12118064, 152.1112707 , 152.102268  , 152.09394524,
           152.08646062, 152.07967323, 152.07337   , 152.06772299,
           152.06248036, 152.05779897, 152.05344349, 152.04956603,
           152.04594958, 152.04274165, 152.03974152, 152.03723678,
           152.03770233, 152.03883229, 152.03986205, 152.04079072,
           152.041649  , 152.04242696, 152.04313295, 152.04338785,
           152.04364361, 152.04392876, 152.04419377, 152.0444226 ,
           152.0447089 , 152.04530852, 152.04554794, 152.0457575 ,
           152.04595716, 152.04613018, 152.04629475, 152.04644218,
           152.04657382, 152.0466978 , 152.0468066 , 152.0469082 ,
           152.04700243, 152.04708911, 152.04716156, 152.04723421,
           152.04729311, 152.04735235, 152.04740486, 152.04745049]), 'beta': array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00, -2.57050755e-01, -6.60326286e-01,
            -9.78489254e-01, -1.26685258e+00, -1.53621534e+00,
            -1.97998984e+00, -2.33787474e+00, -2.66018889e+00,
            -2.95822820e+00, -3.22526923e+00, -3.47211745e+00,
            -3.69568054e+00, -3.89802418e+00, -4.08448852e+00,
            -4.25217821e+00, -4.40633136e+00, -4.54760761e+00,
            -4.67674008e+00, -4.79098332e+00, -4.89877047e+00,
            -4.99301452e+00, -5.08205906e+00, -5.16234069e+00,
            -5.23446789e+00],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00, -1.49446624e+01,
            -3.33086438e+01, -4.99701883e+01, -6.51519098e+01,
            -7.89849273e+01, -9.14807107e+01, -1.02558316e+02,
            -1.12553874e+02, -1.21673779e+02, -1.29983486e+02,
            -1.37554982e+02, -1.44453847e+02, -1.50739836e+02,
            -1.56467395e+02, -1.62068215e+02, -1.67199275e+02,
            -1.71883535e+02, -1.76140004e+02, -1.80029098e+02,
            -1.83575513e+02, -1.86794371e+02, -1.89737633e+02,
            -1.92422931e+02, -1.94857087e+02, -1.97085482e+02,
            -1.99105321e+02, -2.00956533e+02, -2.02633054e+02,
            -2.04171528e+02, -2.05563237e+02, -2.06842288e+02,
            -2.07997804e+02, -2.09060396e+02, -2.10339592e+02,
            -2.11701852e+02, -2.12943164e+02, -2.14069597e+02,
            -2.15101772e+02, -2.16040314e+02, -2.16894118e+02,
            -2.17720672e+02, -2.18460918e+02, -2.19212695e+02,
            -2.19879074e+02, -2.20478047e+02, -2.21040126e+02,
            -2.21464981e+02, -2.21782875e+02, -2.22068384e+02,
            -2.22333206e+02, -2.22569663e+02, -2.22788891e+02,
            -2.22987204e+02, -2.23166444e+02, -2.23331996e+02,
            -2.23480492e+02, -2.23617233e+02, -2.23742706e+02,
            -2.23857470e+02, -2.23958401e+02, -2.24054259e+02,
            -2.24137436e+02, -2.24216526e+02, -2.24287751e+02,
            -2.24351589e+02],
           [ 0.00000000e+00,  8.12690155e+01,  1.36371438e+02,
             1.83441721e+02,  2.26329677e+02,  2.65424715e+02,
             3.01029532e+02,  3.33471311e+02,  3.63031051e+02,
             3.85363952e+02,  4.02298321e+02,  4.14560699e+02,
             4.25779668e+02,  4.36001929e+02,  4.45316073e+02,
             4.53802774e+02,  4.61535540e+02,  4.68218469e+02,
             4.73667496e+02,  4.78690817e+02,  4.83267733e+02,
             4.87438049e+02,  4.91237886e+02,  4.92787323e+02,
             4.93507456e+02,  4.94238917e+02,  4.94904948e+02,
             4.95511813e+02,  4.96218138e+02,  4.97513685e+02,
             4.98767866e+02,  4.99952852e+02,  5.01034299e+02,
             5.02019709e+02,  5.02917578e+02,  5.03735683e+02,
             5.04481110e+02,  5.05182886e+02,  5.05982344e+02,
             5.06697422e+02,  5.07366395e+02,  5.07959876e+02,
             5.08496411e+02,  5.09003963e+02,  5.09450892e+02,
             5.09852635e+02,  5.10237791e+02,  5.10572273e+02,
             5.10893667e+02,  5.11168610e+02,  5.11436170e+02,
             5.11660454e+02,  5.11883126e+02,  5.12064493e+02,
             5.12249641e+02,  5.12397142e+02,  5.12110707e+02,
             5.11537926e+02,  5.11015923e+02,  5.10547161e+02,
             5.10111373e+02,  5.09717193e+02,  5.09360059e+02,
             5.09062511e+02,  5.08773585e+02,  5.08352963e+02,
             5.08021209e+02,  5.07729466e+02,  5.07439254e+02,
             5.07147323e+02,  5.07002339e+02,  5.06877126e+02,
             5.06755269e+02,  5.06652272e+02,  5.06552156e+02,
             5.06463320e+02,  5.06384795e+02,  5.06309534e+02,
             5.06244857e+02,  5.06183541e+02,  5.06126213e+02,
             5.06073252e+02,  5.06031044e+02,  5.05986114e+02,
             5.05952149e+02,  5.05915669e+02,  5.05883889e+02,
             5.05856727e+02],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             1.70132045e+01,  3.85628559e+01,  5.85831519e+01,
             7.68171853e+01,  9.34313567e+01,  1.08569571e+02,
             1.22362948e+02,  1.34930959e+02,  1.45883461e+02,
             1.54892818e+02,  1.63098250e+02,  1.70574758e+02,
             1.77387073e+02,  1.83594201e+02,  1.91698488e+02,
             1.99877350e+02,  2.07309626e+02,  2.14081739e+02,
             2.20252235e+02,  2.25836131e+02,  2.30854142e+02,
             2.35350216e+02,  2.39480301e+02,  2.43244261e+02,
             2.46673858e+02,  2.49798780e+02,  2.52646093e+02,
             2.55240458e+02,  2.58060407e+02,  2.61002208e+02,
             2.63672892e+02,  2.66118970e+02,  2.68336072e+02,
             2.70353151e+02,  2.72204610e+02,  2.73880339e+02,
             2.75403355e+02,  2.76804780e+02,  2.78070207e+02,
             2.79234835e+02,  2.80284018e+02,  2.81251353e+02,
             2.82120520e+02,  2.82923836e+02,  2.83643348e+02,
             2.84310210e+02,  2.84907333e+02,  2.85740812e+02,
             2.86495875e+02,  2.87183902e+02,  2.87806755e+02,
             2.88379402e+02,  2.88899485e+02,  2.89372184e+02,
             2.89761820e+02,  2.90051027e+02,  2.90329831e+02,
             2.90583199e+02,  2.90814356e+02,  2.91023079e+02,
             2.91367320e+02,  2.91724450e+02,  2.92045544e+02,
             2.92343586e+02,  2.92609412e+02,  2.92856115e+02,
             2.93079121e+02,  2.93280599e+02,  2.93466879e+02,
             2.93633725e+02,  2.93787566e+02,  2.93928760e+02,
             2.94057918e+02,  2.94171205e+02,  2.94279355e+02,
             2.94372739e+02,  2.94462054e+02,  2.94542347e+02,
             2.94614283e+02],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00, -1.36641339e+01,
            -2.56949353e+01, -3.65339408e+01, -4.64069841e+01,
            -5.54028686e+01, -6.35995821e+01, -7.10681220e+01,
            -7.78731775e+01, -8.94539161e+01, -1.06025634e+02,
            -1.20932997e+02, -1.34763877e+02, -1.47137268e+02,
            -1.58351801e+02, -1.68835741e+02, -1.78169083e+02,
            -1.86601030e+02, -1.94548188e+02, -2.01574005e+02,
            -2.08193300e+02, -2.14009275e+02, -2.19511594e+02,
            -2.24317764e+02, -2.28887356e+02, -2.32851213e+02,
            -2.36640315e+02, -2.40139689e+02, -2.79565543e+02,
            -3.25766382e+02, -3.67869415e+02, -4.05713131e+02,
            -4.40850849e+02, -4.72649495e+02, -5.01471039e+02,
            -5.17176076e+02, -5.23163263e+02, -5.29752212e+02,
            -5.35582429e+02, -5.40762533e+02, -5.45810791e+02,
            -5.68995791e+02, -5.89704343e+02, -6.08087375e+02,
            -6.25426021e+02, -6.40610244e+02, -6.54925655e+02,
            -6.67781833e+02, -6.79311821e+02, -6.90104449e+02,
            -6.99633636e+02, -7.08506133e+02, -7.16700489e+02,
            -7.24221664e+02, -7.30607557e+02, -7.36940752e+02,
            -7.42167947e+02, -7.47370783e+02, -7.51998243e+02,
            -7.56081896e+02],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00, -9.68976845e-01,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  3.68720080e-01,  3.09620058e+01,
             6.78004170e+01,  1.01371378e+02,  1.31560071e+02,
             1.59572246e+02,  1.84928184e+02,  2.07914199e+02,
             2.20954218e+02,  2.27129841e+02,  2.33995226e+02,
             2.40051777e+02,  2.45431838e+02,  2.50673347e+02,
             2.69236079e+02,  2.85159056e+02,  2.99290150e+02,
             3.12619423e+02,  3.24291879e+02,  3.35296858e+02,
             3.45180286e+02,  3.54043950e+02,  3.62340771e+02,
             3.69666591e+02,  3.76487111e+02,  3.82786560e+02,
             3.88568616e+02,  3.93477958e+02,  3.98345510e+02,
             4.02363641e+02,  4.06361744e+02,  4.09917999e+02,
             4.13055709e+02],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00, -7.42047513e+00, -2.64227558e+01,
            -4.37192376e+01, -5.94791524e+01, -7.38389999e+01,
            -8.69231581e+01, -9.88449557e+01, -1.09571014e+02,
            -1.19034491e+02, -1.27637232e+02, -1.35475817e+02,
            -1.42618044e+02, -1.49125776e+02, -1.61151255e+02,
            -1.74158633e+02, -1.85931064e+02, -1.96657994e+02,
            -2.06431972e+02, -2.15283466e+02, -2.18436551e+02,
            -2.21382759e+02, -2.24160360e+02, -2.26693300e+02,
            -2.29001265e+02, -2.31104198e+02, -2.33020313e+02,
            -2.34766205e+02, -2.29197167e+02, -2.16487393e+02,
            -2.05147275e+02, -1.94504046e+02, -1.85092964e+02,
            -1.76592652e+02, -1.68514654e+02, -1.61428957e+02,
            -1.55063466e+02, -1.48932141e+02, -1.43616020e+02,
            -1.38498773e+02, -1.34107644e+02, -1.29850450e+02,
            -1.26234871e+02, -1.22698301e+02, -1.19732541e+02,
            -1.16801703e+02, -1.14415778e+02, -9.70975143e+01,
            -7.79478962e+01, -6.04966620e+01, -4.48311763e+01,
            -3.02597389e+01, -1.70813532e+01, -5.14262258e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  9.51704287e-02,
             1.00979264e+01,  1.98453510e+01,  2.85092746e+01,
             3.66716835e+01,  4.38287086e+01,  5.05691226e+01,
             5.66246632e+01,  6.20583085e+01,  6.71405249e+01,
             7.16315311e+01,  7.58109830e+01,  7.96692228e+01,
             8.32096263e+01,  8.62217260e+01,  8.92032380e+01,
             9.16703718e+01,  9.41212923e+01,  9.63022628e+01,
             9.82294421e+01],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  1.07249423e+01,  2.98708205e+01,
             4.70612024e+01,  6.30535776e+01,  7.73214769e+01,
             9.02427037e+01,  1.02368722e+02,  1.13126474e+02,
             1.22832215e+02,  1.32026948e+02,  1.40117597e+02,
             1.47779805e+02,  1.54471866e+02,  1.60842617e+02,
             1.66364359e+02,  1.71656130e+02,  1.76198467e+02,
             1.80586841e+02,  1.84136116e+02,  1.90324243e+02,
             1.95603639e+02,  2.00414755e+02,  2.04723395e+02,
             2.08744265e+02,  2.12376626e+02,  2.15664449e+02,
             2.16223112e+02,  2.14236250e+02,  2.11891816e+02,
             2.09849933e+02,  2.08046446e+02,  2.06334688e+02,
             2.09048000e+02,  2.12635649e+02,  2.15838921e+02,
             2.18843627e+02,  2.21490940e+02,  2.23973928e+02,
             2.26207991e+02,  2.28216571e+02,  2.30089459e+02,
             2.31750108e+02,  2.33292294e+02,  2.34713473e+02,
             2.36016351e+02,  2.37133821e+02,  2.38230875e+02,
             2.39148329e+02,  2.40052084e+02,  2.40858196e+02,
             2.41574016e+02],
           [ 0.00000000e+00,  0.00000000e+00,  4.39167099e+01,
             9.11948248e+01,  1.34273201e+02,  1.73517156e+02,
             2.09282242e+02,  2.41870058e+02,  2.71562863e+02,
             2.94523024e+02,  3.11724868e+02,  3.23628840e+02,
             3.34465299e+02,  3.44339094e+02,  3.53335729e+02,
             3.61533128e+02,  3.69002292e+02,  3.75138158e+02,
             3.79492227e+02,  3.83458578e+02,  3.87072520e+02,
             3.90365409e+02,  3.93365767e+02,  3.95111217e+02,
             3.96238866e+02,  3.97315160e+02,  3.98295771e+02,
             3.99189268e+02,  4.00198190e+02,  4.08663636e+02,
             4.16302632e+02,  4.23144408e+02,  4.29375211e+02,
             4.35052422e+02,  4.40225282e+02,  4.44938601e+02,
             4.49233201e+02,  4.51860678e+02,  4.54350055e+02,
             4.56591666e+02,  4.58667887e+02,  4.60528445e+02,
             4.62215542e+02,  4.63789062e+02,  4.65192798e+02,
             4.66462188e+02,  4.67654746e+02,  4.68712723e+02,
             4.69705653e+02,  4.70583274e+02,  4.71408346e+02,
             4.72137042e+02,  4.72821750e+02,  4.73428395e+02,
             4.73995322e+02,  4.74609787e+02,  4.88709192e+02,
             5.05740213e+02,  5.21260699e+02,  5.35211675e+02,
             5.48164290e+02,  5.59886261e+02,  5.70510921e+02,
             5.76543528e+02,  5.79304110e+02,  5.82431273e+02,
             5.85176234e+02,  5.87610894e+02,  5.89984755e+02,
             5.98595185e+02,  6.06028752e+02,  6.12621941e+02,
             6.18846132e+02,  6.24291474e+02,  6.29429657e+02,
             6.34042562e+02,  6.38177930e+02,  6.42051372e+02,
             6.45468850e+02,  6.48652331e+02,  6.51593539e+02,
             6.54293636e+02,  6.56582200e+02,  6.58856110e+02,
             6.60728503e+02,  6.62595845e+02,  6.64255708e+02,
             6.65719010e+02],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  2.22420700e+00,
             8.40506170e+00,  1.40221248e+01,  1.91402273e+01,
             2.38036515e+01,  2.80527900e+01,  3.35745064e+01,
             3.91912042e+01,  4.42732349e+01,  4.89039329e+01,
             5.31232518e+01,  5.71159051e+01,  6.22997267e+01,
             6.71436153e+01,  7.15185283e+01,  7.55036834e+01,
             7.91347844e+01,  8.24433079e+01,  8.54579112e+01,
             8.82047055e+01,  9.04601432e+01,  9.24531001e+01,
             9.42683183e+01,  9.59231132e+01,  9.74301242e+01,
             9.88030833e+01,  1.00054948e+02,  1.01194963e+02,
             1.02233707e+02,  1.03180712e+02,  1.04043665e+02,
             1.04829883e+02,  1.05547098e+02,  1.06199712e+02,
             1.06796261e+02,  1.07337852e+02,  1.07834246e+02,
             1.08283591e+02,  1.08676167e+02,  1.08790144e+02,
             1.08924256e+02,  1.09046456e+02,  1.09158016e+02,
             1.09259390e+02,  1.09351846e+02,  1.09436149e+02,
             1.09513219e+02,  1.09652233e+02,  1.09844120e+02,
             1.09991972e+02,  1.10125028e+02,  1.10252188e+02,
             1.10368743e+02,  1.10441912e+02,  1.10508143e+02,
             1.10568876e+02,  1.10623828e+02,  1.10674197e+02,
             1.10719990e+02,  1.10761597e+02,  1.10799677e+02,
             1.10834205e+02,  1.10865760e+02,  1.10894585e+02,
             1.10920886e+02,  1.10944569e+02,  1.10966411e+02,
             1.10985993e+02,  1.11004066e+02,  1.11020463e+02,
             1.11035326e+02]]), 'dev': array([0.        , 0.05641001, 0.11880048, 0.17305008, 0.21808882,
           0.2554852 , 0.28652791, 0.31230011, 0.33369665, 0.35412118,
           0.37300264, 0.39032216, 0.40470384, 0.41664375, 0.42655648,
           0.4347862 , 0.44161866, 0.44738094, 0.45231927, 0.4564217 ,
           0.45982761, 0.46265525, 0.46500281, 0.46891586, 0.472756  ,
           0.47593769, 0.47857921, 0.48077224, 0.48266112, 0.4850628 ,
           0.48708015, 0.48875059, 0.49013731, 0.49128859, 0.4922444 ,
           0.49303793, 0.49369674, 0.49444377, 0.49525646, 0.49592659,
           0.49648931, 0.49695178, 0.4973351 , 0.49765856, 0.49792371,
           0.49814318, 0.49832939, 0.49848145, 0.49861048, 0.49871548,
           0.49880484, 0.49887732, 0.49893924, 0.49898927, 0.49903219,
           0.49906914, 0.49939168, 0.49974097, 0.50003231, 0.50027232,
           0.50047642, 0.50064571, 0.5007865 , 0.50086059, 0.50089074,
           0.50092133, 0.50094613, 0.50096647, 0.50098483, 0.50107352,
           0.50114759, 0.50120815, 0.50126073, 0.50130323, 0.50134019,
           0.50137086, 0.50139632, 0.5014184 , 0.50143649, 0.50145215,
           0.50146558, 0.50147706, 0.50148616, 0.5014946 , 0.50150113,
           0.50150723, 0.50151232, 0.50151656]), 'nulldev': array([3.08783547e+02, 5.68934729e+03, 1.06973020e+04, 7.46975805e+03,
           7.10271730e+01, 1.55454842e+03, 6.49188553e+03, 9.16277396e+01,
           9.87704227e+02, 4.15093652e+03, 2.23718544e+04, 5.96715558e+02,
           1.00857354e+04, 6.53939354e+02, 3.89722547e+03, 1.33916691e+02,
           3.03726890e+02, 2.44310366e+03, 2.26311782e+03, 6.53939354e+02,
           1.17879309e+04, 7.81946910e+03, 8.72874672e+03, 5.39163624e+03,
           1.11150130e+04, 2.06368156e+03, 1.28658572e+04, 2.03850444e+00,
           2.34524814e+03, 4.16957392e+03, 6.33174105e+03, 9.49216882e+03,
           8.56961924e+03, 4.59148986e+02, 7.81946910e+03, 4.84029629e+03,
           9.32619714e+03, 5.96715558e+02, 1.97605541e+04, 2.08160317e+02,
           1.45376646e+04, 3.10498359e+01, 2.42494595e+02, 2.44310366e+03,
           1.54449269e+02, 4.13161248e+01, 1.55182425e+04, 1.32698185e+03,
           6.49188553e+03, 3.41380338e+03, 2.03268430e+04, 1.48781754e+03,
           7.84504134e+03, 2.47193220e+00, 1.30593745e+02, 9.91463057e+03,
           2.07682887e+03, 1.83798317e+04, 2.64481471e+03, 7.06083830e+02,
           5.48860034e+02, 4.65361451e+02, 3.77336995e+03, 4.68235862e+03,
           6.03794878e+02, 4.43186287e+03, 7.29790253e+03, 1.55454842e+03,
           6.79433595e+03, 9.88587986e+03, 5.89402852e+00, 1.26400017e+04,
           1.11454974e+04, 2.42494595e+02, 1.70491093e+04, 9.91463057e+03,
           1.19744351e+04, 6.15091386e+03, 5.53949176e+03, 3.20041811e+03,
           1.38232311e+04, 3.89722547e+03, 6.30876938e+03, 2.48290102e+04,
           2.54295918e+03, 1.40083737e+03, 4.54650309e+03, 2.34524814e+03,
           7.12804700e+03, 2.64481471e+03, 1.80304793e+02, 7.99732462e+03,
           6.46862491e+03, 8.91660224e+03, 4.59148986e+02, 6.63048043e+03,
           2.96238128e+03, 4.15093652e+03, 1.55182425e+04, 2.34524814e+03,
           2.12350119e+02, 1.97382604e+03, 1.71625947e+03, 3.79114049e+03,
           3.03726890e+02, 1.89853992e+03, 1.33752859e+03, 5.68934729e+03,
           5.26672972e+03, 8.54289120e+03, 7.29790253e+03, 1.94804096e+04,
           8.88826971e+01, 1.65308204e+04, 1.62378345e+04, 2.26311782e+03,
           3.77336995e+03, 1.22262198e+04, 3.29794785e+03, 7.10271730e+01,
           6.33174105e+03, 1.88597052e+03, 1.02875909e+04, 7.81946910e+03,
           1.70491093e+04, 1.13576419e+04, 3.79114049e+03, 8.54289120e+03,
           1.71625947e+03, 1.11454974e+04, 7.12804700e+03, 4.65361451e+02,
           1.18527080e+03, 1.55454842e+03, 2.35844323e+04, 6.79433595e+03,
           5.53949176e+03, 1.48781754e+03, 4.56600734e+03, 9.34661734e+02,
           8.08137655e+02, 1.17565796e+04, 7.99732462e+03, 1.47669290e+03,
           5.86330763e+03, 5.68934729e+03, 2.42494595e+02, 1.20060753e+04,
           3.77336995e+03, 4.54650309e+03, 5.48860034e+02, 3.41380338e+03,
           5.51716489e+01, 8.02318581e+03, 1.13576419e+04, 1.38232311e+04,
           1.30593745e+02, 1.42975201e+04, 1.08738221e+02, 1.52700980e+04,
           7.64361358e+03, 6.81817448e+03, 1.06095069e+03, 8.56961924e+03,
           6.63048043e+03, 6.46862491e+03, 2.26311782e+03, 5.73387877e+01,
           2.64481471e+03, 4.59148986e+02, 4.82021414e+03, 2.45740678e+03,
           9.87704227e+02, 6.53939354e+02, 4.16957392e+03, 4.41264757e+03,
           1.62746759e+04, 6.01745210e+03, 8.75576372e+03, 5.96715558e+02,
           4.54650309e+03, 1.21942906e+04, 4.15093652e+03, 2.34524814e+03,
           8.88826971e+01, 7.60228306e+02, 8.16372782e+02, 1.09051575e+04,
           6.63048043e+03, 9.25848703e+02, 1.00857354e+04, 1.82980363e-01,
           2.03850444e+00, 1.65308204e+04, 9.88587986e+03, 4.15093652e+03,
           1.47798090e+04, 6.61640812e+00, 1.60205314e+04, 5.48860034e+02,
           1.22262198e+04, 1.09353530e+04, 4.56600734e+03, 1.09051575e+04,
           3.53165890e+03, 5.96715558e+02, 1.08738221e+02, 1.82980363e-01,
           1.02875909e+04, 7.99732462e+03, 8.20333029e+03, 4.28079205e+03,
           1.41167307e+03, 6.46862491e+03, 6.63048043e+03, 6.96019148e+03,
           2.74867023e+03, 2.69871366e+02, 1.80304793e+02, 1.11772215e+02,
           1.89853992e+03, 1.80011499e+03, 2.26311782e+03, 3.08783547e+02,
           2.26719988e+04, 2.26311782e+03, 2.70840215e+04, 1.21942906e+04,
           1.65308204e+04, 3.83072499e+02, 1.50239535e+04, 2.48290102e+04,
           8.35903567e+03, 3.74702113e+04, 7.64361358e+03, 4.02308100e+03,
           3.07223680e+03, 4.56600734e+03, 1.41167307e+03, 9.49216882e+03,
           5.10192519e+03, 4.82021414e+03, 1.84205643e+02, 6.98431896e+03,
           1.32698185e+03, 1.50239535e+04, 1.50239535e+04, 8.38547477e+03,
           9.49216882e+03, 4.54650309e+03, 1.18527080e+03, 1.08738221e+02,
           1.18527080e+03, 3.39582414e+02, 6.15091386e+03, 2.42027212e+04,
           9.91463057e+03, 1.11150130e+04, 1.04914464e+04, 8.02318581e+03,
           2.07682887e+03, 6.98426606e+02, 1.65308204e+04, 3.07223680e+03,
           2.86998468e+03, 6.53939354e+02, 1.00857354e+04, 1.01147750e+04,
           3.89722547e+03, 5.26672972e+03, 5.99505833e+03, 3.07223680e+03,
           1.24483643e+04, 4.59148986e+02, 7.10271730e+01, 2.45740678e+03,
           1.06095069e+03, 4.70215182e+03, 2.38015842e+02, 3.65151443e+03,
           1.33569422e+04, 2.51451547e+04, 1.19523964e+03, 3.27456283e-01,
           2.45740678e+03, 1.09353530e+04, 1.98668440e+03, 1.98668440e+03,
           9.10645777e+03, 1.09051575e+04, 5.09505927e+02, 3.18409233e+03,
           4.68235862e+03, 6.46571082e+02, 6.53939354e+02, 2.85452576e+03,
           2.54295918e+03, 2.94606008e+01, 2.16897335e+03, 6.63048043e+03,
           1.56596202e+03, 1.06973020e+04, 2.35926230e+03, 1.33569422e+04,
           3.08783547e+02, 3.22461886e+04, 8.20333029e+03, 7.06083830e+02,
           1.06973020e+04, 1.88597052e+03, 3.89722547e+03, 2.06368156e+03,
           1.96050767e+01, 1.00857354e+04, 4.82021414e+03, 8.74517258e+02,
           1.42975201e+04, 7.15246343e+03, 1.05155975e+03, 7.64361358e+03,
           4.17293462e+02, 3.89722547e+03, 4.04142944e+03, 1.30593745e+02,
           7.60228306e+02, 8.08137655e+02, 5.73387877e+01, 6.61640812e+00,
           3.41380338e+03, 5.89402852e+00, 6.46862491e+03, 3.29794785e+03,
           8.16372782e+02, 8.72874672e+03, 5.68934729e+03, 3.55594889e+04,
           1.71625947e+03, 1.08738221e+02, 2.85452576e+03, 2.09011320e+04,
           5.89402852e+00, 3.08827363e+03, 7.64361358e+03, 1.33235682e+04,
           4.68235862e+03, 3.39582414e+02, 3.31456258e+03, 7.10271730e+01,
           4.56600734e+03, 3.65151443e+03, 8.02318581e+03, 4.17293462e+02,
           2.86998468e+03]), 'df': array([ 0,  1,  2,  2,  2,  2,  2,  2,  2,  3,  4,  4,  4,  4,  4,  4,  4,
            5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  7,  7,
            7,  7,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,
            8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  8,  9,  9,  9,  9,
           10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
           10, 10, 10]), 'lambdau': array([4.40344909e+01, 4.01225881e+01, 3.65582080e+01, 3.33104775e+01,
           3.03512665e+01, 2.76549436e+01, 2.51981547e+01, 2.29596201e+01,
           2.09199507e+01, 1.90614799e+01, 1.73681106e+01, 1.58251755e+01,
           1.44193105e+01, 1.31383387e+01, 1.19711649e+01, 1.09076796e+01,
           9.93867143e+00, 9.05574725e+00, 8.25125963e+00, 7.51824046e+00,
           6.85034070e+00, 6.24177531e+00, 5.68727320e+00, 5.18203152e+00,
           4.72167412e+00, 4.30221361e+00, 3.92001681e+00, 3.57177332e+00,
           3.25446682e+00, 2.96534896e+00, 2.70191553e+00, 2.46188480e+00,
           2.24317774e+00, 2.04390001e+00, 1.86232557e+00, 1.69688170e+00,
           1.54613540e+00, 1.40878100e+00, 1.28362878e+00, 1.16959473e+00,
           1.06569116e+00, 9.71018095e-01, 8.84755524e-01, 8.06156282e-01,
           7.34539579e-01, 6.69285108e-01, 6.09827663e-01, 5.55652254e-01,
           5.06289640e-01, 4.61312263e-01, 4.20330553e-01, 3.82989545e-01,
           3.48965810e-01, 3.17964649e-01, 2.89717546e-01, 2.63979838e-01,
           2.40528596e-01, 2.19160699e-01, 1.99691066e-01, 1.81951062e-01,
           1.65787032e-01, 1.51058969e-01, 1.37639306e-01, 1.25411810e-01,
           1.14270570e-01, 1.04119088e-01, 9.48694348e-02, 8.64414957e-02,
           7.87622714e-02, 7.17652483e-02, 6.53898214e-02, 5.95807699e-02,
           5.42877785e-02, 4.94650019e-02, 4.50706675e-02, 4.10667136e-02,
           3.74184599e-02, 3.40943071e-02, 3.10654628e-02, 2.83056927e-02,
           2.57910930e-02, 2.34998834e-02, 2.14122185e-02, 1.95100160e-02,
           1.77768000e-02, 1.61975581e-02, 1.47586116e-02, 1.34474973e-02]), 'npasses': 1211, 'jerr': 0, 'dim': array([10, 88]), 'offset': False, 'class': 'elnet'}, 'lambda_min': array([1.28362878]), 'lambda_1se': array([7.51824046]), 'class': 'cvglmnet'}
    
    
     dataset: fetch_california_housing -------------------
    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'gaussian', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}
    elapsed: 0.0047762393951416016
    	 df 	 %dev 	 lambdau
    
    0 	 0.000000 	 0.000000 	 0.790539
    1 	 1.000000 	 0.079846 	 0.720310
    2 	 1.000000 	 0.146136 	 0.656320
    3 	 1.000000 	 0.201171 	 0.598014
    4 	 1.000000 	 0.246862 	 0.544888
    5 	 1.000000 	 0.284796 	 0.496482
    6 	 1.000000 	 0.316289 	 0.452376
    7 	 1.000000 	 0.342435 	 0.412188
    8 	 1.000000 	 0.364142 	 0.375570
    9 	 1.000000 	 0.382163 	 0.342206
    10 	 1.000000 	 0.397125 	 0.311805
    11 	 1.000000 	 0.409546 	 0.284105
    12 	 1.000000 	 0.419859 	 0.258866
    13 	 1.000000 	 0.428421 	 0.235869
    14 	 1.000000 	 0.435529 	 0.214915
    15 	 1.000000 	 0.441430 	 0.195823
    16 	 2.000000 	 0.451591 	 0.178426
    17 	 2.000000 	 0.460828 	 0.162575
    18 	 2.000000 	 0.468496 	 0.148133
    19 	 2.000000 	 0.474863 	 0.134973
    20 	 2.000000 	 0.480149 	 0.122982
    21 	 3.000000 	 0.484680 	 0.112057
    22 	 3.000000 	 0.489706 	 0.102102
    23 	 3.000000 	 0.493879 	 0.093032
    24 	 3.000000 	 0.497344 	 0.084767
    25 	 3.000000 	 0.500220 	 0.077236
    26 	 3.000000 	 0.502608 	 0.070375
    27 	 4.000000 	 0.507848 	 0.064123
    28 	 4.000000 	 0.521856 	 0.058427
    29 	 4.000000 	 0.533472 	 0.053236
    30 	 4.000000 	 0.543117 	 0.048507
    31 	 4.000000 	 0.551159 	 0.044198
    32 	 4.000000 	 0.557809 	 0.040271
    33 	 6.000000 	 0.563606 	 0.036694
    34 	 6.000000 	 0.569117 	 0.033434
    35 	 6.000000 	 0.573708 	 0.030464
    36 	 6.000000 	 0.577542 	 0.027757
    37 	 6.000000 	 0.580708 	 0.025291
    38 	 6.000000 	 0.583337 	 0.023045
    39 	 6.000000 	 0.585536 	 0.020997
    40 	 6.000000 	 0.587350 	 0.019132
    41 	 7.000000 	 0.589628 	 0.017432
    42 	 7.000000 	 0.591806 	 0.015884
    43 	 7.000000 	 0.593641 	 0.014473
    44 	 7.000000 	 0.595162 	 0.013187
    45 	 7.000000 	 0.596442 	 0.012015
    46 	 7.000000 	 0.597491 	 0.010948
    47 	 7.000000 	 0.598376 	 0.009975
    48 	 7.000000 	 0.599099 	 0.009089
    49 	 7.000000 	 0.599711 	 0.008282
    50 	 7.000000 	 0.600209 	 0.007546
    51 	 7.000000 	 0.600633 	 0.006876
    52 	 7.000000 	 0.600976 	 0.006265
    53 	 7.000000 	 0.601269 	 0.005708
    54 	 7.000000 	 0.601506 	 0.005201
    55 	 7.000000 	 0.601709 	 0.004739
    56 	 7.000000 	 0.601873 	 0.004318
    57 	 7.000000 	 0.602014 	 0.003935
    58 	 7.000000 	 0.602126 	 0.003585
    59 	 7.000000 	 0.602224 	 0.003267
    60 	 7.000000 	 0.602306 	 0.002976
    61 	 7.000000 	 0.602371 	 0.002712
    62 	 7.000000 	 0.602427 	 0.002471
    63 	 7.000000 	 0.602471 	 0.002251
    64 	 7.000000 	 0.602511 	 0.002051
    65 	 7.000000 	 0.602544 	 0.001869
    66 	 7.000000 	 0.602569 	 0.001703
    67 	 7.000000 	 0.602592 	 0.001552
    68 	 7.000000 	 0.602612 	 0.001414
    69 	 7.000000 	 0.602626 	 0.001288
    70 	 7.000000 	 0.602639 	 0.001174
    71 	 7.000000 	 0.602651 	 0.001070
    72 	 7.000000 	 0.602659 	 0.000975
    73 	 7.000000 	 0.602668 	 0.000888
    74 	 8.000000 	 0.602674 	 0.000809
    75 	 8.000000 	 0.602680 	 0.000737
    [2.15386169 1.40517538 1.75155998 ... 1.5786708  2.24914669 2.74749123]
    [[2.15386169 2.0965379 ]
     [1.40517538 1.73841308]
     [1.75155998 1.96630653]
     ...
     [1.5786708  1.82758546]
     [2.24914669 2.09450709]
     [2.74749123 2.33255459]]
    [2.0965379  1.73841308 1.96630653 ... 1.82758546 2.09450709 2.33255459]
    elapsed: 0.08082914352416992
    
     best lambda:  0.0029763296520373566
    
     best lambda std. dev:  0.015883776165844302
    
     best coef:  [-2.89480122e+01  3.87657120e-01  1.00434474e-02 -1.47638444e-02
      1.56518514e-01  0.00000000e+00 -2.28921823e-03 -3.44888900e-01
     -3.46534665e-01]
    
     best GLMNet:  {'lambdau': array([7.90539283e-01, 7.20309952e-01, 6.56319601e-01, 5.98013976e-01,
           5.44888063e-01, 4.96481709e-01, 4.52375642e-01, 4.12187837e-01,
           3.75570206e-01, 3.42205584e-01, 3.11804983e-01, 2.84105088e-01,
           2.58865975e-01, 2.35869035e-01, 2.14915080e-01, 1.95822617e-01,
           1.78426275e-01, 1.62575377e-01, 1.48132628e-01, 1.34972934e-01,
           1.22982310e-01, 1.12056901e-01, 1.02102075e-01, 9.30316077e-02,
           8.47669361e-02, 7.72364751e-02, 7.03749995e-02, 6.41230785e-02,
           5.84265609e-02, 5.32361063e-02, 4.85067573e-02, 4.41975507e-02,
           4.02711621e-02, 3.66935831e-02, 3.34338263e-02, 3.04636573e-02,
           2.77573499e-02, 2.52914635e-02, 2.30446396e-02, 2.09974173e-02,
           1.91320646e-02, 1.74324247e-02, 1.58837762e-02, 1.44727053e-02,
           1.31869900e-02, 1.20154942e-02, 1.09480708e-02, 9.97547435e-03,
           9.08928070e-03, 8.28181406e-03, 7.54608052e-03, 6.87570753e-03,
           6.26488862e-03, 5.70833318e-03, 5.20122059e-03, 4.73915849e-03,
           4.31814471e-03, 3.93453264e-03, 3.58499960e-03, 3.26651812e-03,
           2.97632965e-03, 2.71192073e-03, 2.47100117e-03, 2.25148423e-03,
           2.05146858e-03, 1.86922176e-03, 1.70316525e-03, 1.55186075e-03,
           1.41399772e-03, 1.28838206e-03, 1.17392574e-03, 1.06963742e-03,
           9.74613777e-04, 8.88031775e-04, 8.09141480e-04, 7.37259581e-04]), 'cvm': array([1.32794354, 1.22292703, 1.13481835, 1.06167325, 1.00095081,
           0.95054152, 0.90869409, 0.87395456, 0.84511588, 0.82117596,
           0.80130284, 0.78480587, 0.77111164, 0.75974414, 0.75030818,
           0.74244809, 0.72908801, 0.71682279, 0.70664152, 0.69819024,
           0.69117511, 0.68511138, 0.6785909 , 0.67305371, 0.66845763,
           0.66464277, 0.66147643, 0.65464086, 0.63599482, 0.6205351 ,
           0.6076784 , 0.59699995, 0.58815497, 0.5801874 , 0.57304095,
           0.56700578, 0.56200649, 0.55794318, 0.55464407, 0.55190472,
           0.54967906, 0.54750774, 0.54502344, 0.54289758, 0.54115612,
           0.53975023, 0.53861561, 0.53769851, 0.5369726 , 0.53638576,
           0.53592615, 0.53556223, 0.53527887, 0.53506031, 0.5348938 ,
           0.53477021, 0.5346767 , 0.53461606, 0.53457253, 0.53454878,
           0.53453534, 0.53454145, 0.53454912, 0.53456553, 0.53458344,
           0.53460438, 0.53463299, 0.53466219, 0.53468341, 0.53471083,
           0.53473878, 0.53475851, 0.53478052, 0.53480475, 0.53482847,
           0.53484363]), 'cvsd': array([0.01178608, 0.01293004, 0.01366089, 0.01428224, 0.01477845,
           0.01515521, 0.01542664, 0.0156092 , 0.01571898, 0.01577054,
           0.01577649, 0.01574747, 0.0156923 , 0.01561818, 0.01553091,
           0.01543565, 0.01536175, 0.01521551, 0.01507116, 0.01493074,
           0.01479571, 0.01467942, 0.01454884, 0.01441053, 0.01428044,
           0.01415866, 0.01404511, 0.01406737, 0.01382548, 0.01361343,
           0.01342251, 0.01325314, 0.01310364, 0.01285698, 0.01259207,
           0.01240794, 0.0122745 , 0.01218093, 0.01211811, 0.01209786,
           0.0120965 , 0.01213827, 0.01201918, 0.0118633 , 0.01172291,
           0.01160189, 0.01150054, 0.01141143, 0.01133933, 0.01127929,
           0.01122912, 0.01118883, 0.01115662, 0.01113133, 0.01111179,
           0.01109708, 0.01108679, 0.01107902, 0.0110729 , 0.01107114,
           0.01106948, 0.01107177, 0.01107547, 0.01108005, 0.01108465,
           0.0110883 , 0.01109275, 0.01109805, 0.01110229, 0.01110699,
           0.01111198, 0.01111601, 0.0111207 , 0.01112377, 0.01112778,
           0.01113096]), 'cvup': array([1.33972961, 1.23585706, 1.14847923, 1.07595549, 1.01572926,
           0.96569674, 0.92412073, 0.88956376, 0.86083487, 0.8369465 ,
           0.81707933, 0.80055334, 0.78680394, 0.77536232, 0.76583909,
           0.75788374, 0.74444976, 0.7320383 , 0.72171268, 0.71312098,
           0.70597082, 0.6997908 , 0.69313973, 0.68746424, 0.68273806,
           0.67880143, 0.67552153, 0.66870824, 0.6498203 , 0.63414852,
           0.62110091, 0.61025309, 0.60125861, 0.59304439, 0.58563302,
           0.57941372, 0.57428099, 0.57012411, 0.56676219, 0.56400258,
           0.56177556, 0.559646  , 0.55704263, 0.55476088, 0.55287903,
           0.55135213, 0.55011615, 0.54910994, 0.54831193, 0.54766505,
           0.54715527, 0.54675106, 0.54643549, 0.54619164, 0.54600558,
           0.5458673 , 0.54576349, 0.54569508, 0.54564544, 0.54561992,
           0.54560483, 0.54561322, 0.54562459, 0.54564558, 0.54566809,
           0.54569267, 0.54572575, 0.54576024, 0.5457857 , 0.54581782,
           0.54585076, 0.54587452, 0.54590122, 0.54592852, 0.54595624,
           0.54597458]), 'cvlo': array([1.31615746, 1.20999699, 1.12115746, 1.04739101, 0.98617236,
           0.93538631, 0.89326745, 0.85834536, 0.8293969 , 0.80540542,
           0.78552635, 0.7690584 , 0.75541934, 0.74412596, 0.73477727,
           0.72701244, 0.71372626, 0.70160729, 0.69157036, 0.6832595 ,
           0.67637941, 0.67043197, 0.66404206, 0.65864319, 0.65417719,
           0.65048411, 0.64743132, 0.64057349, 0.62216933, 0.60692167,
           0.59425588, 0.58374681, 0.57505134, 0.56733042, 0.56044887,
           0.55459784, 0.54973199, 0.54576224, 0.54252596, 0.53980686,
           0.53758257, 0.53536947, 0.53300426, 0.53103428, 0.52943322,
           0.52814834, 0.52711506, 0.52628708, 0.52563327, 0.52510648,
           0.52469703, 0.5243734 , 0.52412225, 0.52392899, 0.52378201,
           0.52367313, 0.52358991, 0.52353705, 0.52349963, 0.52347764,
           0.52346586, 0.52346967, 0.52347365, 0.52348548, 0.52349879,
           0.52351608, 0.52354024, 0.52356414, 0.52358113, 0.52360384,
           0.5236268 , 0.5236425 , 0.52365982, 0.52368098, 0.52370069,
           0.52371267]), 'nzero': array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3,
           3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7,
           7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
           7, 7, 7, 7, 7, 7, 7, 7, 8, 8]), 'name': 'Mean-Squared Error', 'glmnet_fit': {'a0': array([  2.07155206,   1.92869743,   1.79853362,   1.6799332 ,
             1.57186891,   1.47340475,   1.38368788,   1.30194121,
             1.22745669,   1.15958917,   1.09775081,   1.041406  ,
             0.99006671,   0.94328826,   0.90066548,   0.86182919,
             0.78419117,   0.70670286,   0.6360984 ,   0.57176624,
             0.51314918,   0.47506172,   0.58273794,   0.68084849,
             0.77024317,   0.85169627,   0.92591331,   0.1340664 ,
            -3.21802346,  -6.26774253,  -9.04592177, -11.588099  ,
           -13.8944293 , -16.01874985, -18.08798159, -19.97898154,
           -21.71286443, -23.2830481 , -24.71279238, -26.02599746,
           -27.21307621, -28.26744172, -28.9480122 , -29.62513797,
           -30.24990969, -30.82753782, -31.34777174, -31.82823844,
           -32.25971861, -32.65911099, -33.01681384, -33.34884939,
           -33.64528032, -33.92136384, -34.16690208, -34.39649895,
           -34.59975107, -34.79071341, -34.95880945, -35.11764682,
           -35.26352689, -35.39020017, -35.51056873, -35.61482234,
           -35.71486741, -35.80749594, -35.88589466, -35.96166964,
           -36.03222638, -36.0907743 , -36.14802348, -36.20180937,
           -36.24520991, -36.29447496, -36.33196639, -36.3685333 ]), 'beta': array([[ 0.00000000e+00,  3.69089068e-02,  7.05389280e-02,
             1.01181351e-01,  1.29101585e-01,  1.54541463e-01,
             1.77721332e-01,  1.98841966e-01,  2.18086300e-01,
             2.35621021e-01,  2.51598006e-01,  2.66155639e-01,
             2.79420013e-01,  2.91506016e-01,  3.02518331e-01,
             3.12552343e-01,  3.22748854e-01,  3.32207839e-01,
             3.40826515e-01,  3.48679531e-01,  3.55834907e-01,
             3.62318017e-01,  3.67885055e-01,  3.72957535e-01,
             3.77579389e-01,  3.81790650e-01,  3.85627795e-01,
             3.88095546e-01,  3.87056210e-01,  3.86116846e-01,
             3.85261953e-01,  3.84464984e-01,  3.83755508e-01,
             3.83125549e-01,  3.82627801e-01,  3.82165258e-01,
             3.81726613e-01,  3.81342219e-01,  3.80993473e-01,
             3.80659146e-01,  3.80369485e-01,  3.82822873e-01,
             3.87657120e-01,  3.91827446e-01,  3.95567845e-01,
             3.99006714e-01,  4.02098409e-01,  4.04953310e-01,
             4.07516028e-01,  4.09888544e-01,  4.12012573e-01,
             4.13984518e-01,  4.15744153e-01,  4.17383249e-01,
             4.18840038e-01,  4.20202429e-01,  4.21407331e-01,
             4.22539521e-01,  4.23534647e-01,  4.24475087e-01,
             4.25342286e-01,  4.26092646e-01,  4.26805003e-01,
             4.27418926e-01,  4.28007930e-01,  4.28556755e-01,
             4.29017421e-01,  4.29462125e-01,  4.29879179e-01,
             4.30220014e-01,  4.30552663e-01,  4.30867949e-01,
             4.31115041e-01,  4.31407474e-01,  4.31626377e-01,
             4.31836134e-01],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  1.33369662e-03,  2.76189648e-03,
             4.06321901e-03,  5.24893562e-03,  6.32931645e-03,
             7.31389310e-03,  8.21261862e-03,  9.03150383e-03,
             9.77764153e-03,  1.04574944e-02,  1.10769510e-02,
             1.14705147e-02,  1.12926558e-02,  1.11317164e-02,
             1.09852236e-02,  1.08491056e-02,  1.07275245e-02,
             1.06183086e-02,  1.05377293e-02,  1.04630180e-02,
             1.03924495e-02,  1.03303673e-02,  1.02740180e-02,
             1.02202715e-02,  1.01734710e-02,  1.00897532e-02,
             1.00434474e-02,  9.99046829e-03,  9.94106280e-03,
             9.89364905e-03,  9.85243264e-03,  9.81285130e-03,
             9.77878640e-03,  9.74577568e-03,  9.71766435e-03,
             9.69012117e-03,  9.66695992e-03,  9.64396712e-03,
             9.62492522e-03,  9.60572308e-03,  9.59011509e-03,
             9.57407572e-03,  9.56133872e-03,  9.54794508e-03,
             9.53533462e-03,  9.52584661e-03,  9.51565144e-03,
             9.50810723e-03,  9.49964598e-03,  9.49143017e-03,
             9.48588215e-03,  9.47946949e-03,  9.47311374e-03,
             9.46919501e-03,  9.46440835e-03,  9.45950373e-03,
             9.45688749e-03,  9.45132176e-03,  9.44858552e-03,
             9.44130490e-03],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00, -5.45971201e-03,
            -1.47638444e-02, -2.29527847e-02, -3.03213745e-02,
            -3.71200603e-02, -4.32155195e-02, -4.88623884e-02,
            -5.39137617e-02, -5.86079073e-02, -6.27931194e-02,
            -6.66959919e-02, -7.01616765e-02, -7.34069655e-02,
            -7.62745909e-02, -7.89731217e-02, -8.13432337e-02,
            -8.35867927e-02, -8.55424347e-02, -8.74068838e-02,
            -8.91292068e-02, -9.06024308e-02, -9.20153003e-02,
            -9.32180705e-02, -9.43866996e-02, -9.54795488e-02,
            -9.63807212e-02, -9.72633558e-02, -9.80951779e-02,
            -9.87597389e-02, -9.94198884e-02, -1.00049959e-01,
            -1.00529109e-01, -1.01125665e-01, -1.01555120e-01,
            -1.01981360e-01],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             1.00918465e-03,  1.50789768e-02,  2.79207547e-02,
             3.96644557e-02,  5.03268779e-02,  6.00383505e-02,
             6.89282660e-02,  7.69912154e-02,  1.08926792e-01,
             1.56518514e-01,  1.98800026e-01,  2.36935453e-01,
             2.72099839e-01,  3.03666611e-01,  3.32875537e-01,
             3.59039527e-01,  3.83318526e-01,  4.04999643e-01,
             4.25184157e-01,  4.43141508e-01,  4.59923618e-01,
             4.74786190e-01,  4.88739712e-01,  5.01028304e-01,
             5.12628595e-01,  5.22773570e-01,  5.32413696e-01,
             5.41308481e-01,  5.48953012e-01,  5.56257505e-01,
             5.62508429e-01,  5.68553441e-01,  5.74194278e-01,
             5.78881710e-01,  5.83448614e-01,  5.87740830e-01,
             5.91206035e-01,  5.94626325e-01,  5.97878609e-01,
             6.00389627e-01,  6.03440785e-01,  6.05675334e-01,
             6.07851891e-01],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00, -4.56049861e-08,
            -1.37960902e-07],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
            -2.97720011e-04, -6.06104752e-04, -8.87055238e-04,
            -1.14297406e-03, -1.37622247e-03, -1.58875608e-03,
            -1.78233867e-03, -1.95878727e-03, -2.12742966e-03,
            -2.28921823e-03, -2.43583353e-03, -2.56923372e-03,
            -2.69085768e-03, -2.80156567e-03, -2.90253796e-03,
            -2.99443853e-03, -3.07827340e-03, -3.15456129e-03,
            -3.22416821e-03, -3.28749367e-03, -3.34528751e-03,
            -3.39785044e-03, -3.44583583e-03, -3.48946222e-03,
            -3.52930315e-03, -3.56550844e-03, -3.59858591e-03,
            -3.62875304e-03, -3.65613482e-03, -3.68115910e-03,
            -3.70386703e-03, -3.72463531e-03, -3.74359159e-03,
            -3.76075916e-03, -3.77646690e-03, -3.79081127e-03,
            -3.80377682e-03, -3.81564822e-03, -3.82649783e-03,
            -3.83627584e-03, -3.84536500e-03, -3.85318347e-03,
            -3.85991343e-03],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
            -4.26219891e-04, -4.77517531e-03, -8.73778142e-03,
            -1.23483605e-02, -1.56381857e-02, -1.86357520e-02,
            -2.97667447e-02, -6.62889605e-02, -9.95115211e-02,
            -1.29775326e-01, -1.57480595e-01, -1.82604176e-01,
            -2.05773443e-01, -2.28277678e-01, -2.48849642e-01,
            -2.67724200e-01, -2.84806306e-01, -3.00359530e-01,
            -3.14656427e-01, -3.27569944e-01, -3.38568753e-01,
            -3.44888900e-01, -3.51353261e-01, -3.57344154e-01,
            -3.62896139e-01, -3.67890055e-01, -3.72510103e-01,
            -3.76651761e-01, -3.80492916e-01, -3.83925855e-01,
            -3.87119816e-01, -3.89964150e-01, -3.92620478e-01,
            -3.94975913e-01, -3.97185544e-01, -3.99134759e-01,
            -4.00973133e-01, -4.02584619e-01, -4.04114281e-01,
            -4.05519980e-01, -4.06733693e-01, -4.07893189e-01,
            -4.08891532e-01, -4.09855867e-01, -4.10749904e-01,
            -4.11500238e-01, -4.12230965e-01, -4.12912688e-01,
            -4.13472586e-01, -4.14025097e-01, -4.14545665e-01,
            -4.14960450e-01, -4.15441966e-01, -4.15806129e-01,
            -4.16167317e-01],
           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
            -9.76512662e-03, -4.87586353e-02, -8.42328207e-02,
            -1.16548205e-01, -1.46123093e-01, -1.72949928e-01,
            -1.97665029e-01, -2.21590530e-01, -2.43457677e-01,
            -2.63512693e-01, -2.81670091e-01, -2.98203052e-01,
            -3.13392971e-01, -3.27119885e-01, -3.39115060e-01,
            -3.46534665e-01, -3.53989218e-01, -3.60878352e-01,
            -3.67252791e-01, -3.72991489e-01, -3.78294486e-01,
            -3.83054050e-01, -3.87462486e-01, -3.91408025e-01,
            -3.95073220e-01, -3.98342708e-01, -4.01390500e-01,
            -4.04098459e-01, -4.06633290e-01, -4.08874683e-01,
            -4.10983195e-01, -4.12836695e-01, -4.14590719e-01,
            -4.16201933e-01, -4.17598433e-01, -4.18927767e-01,
            -4.20076927e-01, -4.21182071e-01, -4.22205705e-01,
            -4.23069724e-01, -4.23906908e-01, -4.24686908e-01,
            -4.25332016e-01, -4.25964718e-01, -4.26559676e-01,
            -4.27037839e-01, -4.27584528e-01, -4.27999904e-01,
            -4.28408964e-01]]), 'dev': array([0.        , 0.07984633, 0.14613615, 0.20117112, 0.24686213,
           0.2847956 , 0.31628864, 0.34243471, 0.36414164, 0.38216311,
           0.39712485, 0.40954636, 0.4198589 , 0.42842056, 0.43552861,
           0.44142983, 0.45159058, 0.46082763, 0.4684964 , 0.47486315,
           0.48014893, 0.48467976, 0.48970616, 0.49387917, 0.49734368,
           0.50021998, 0.50260793, 0.50784849, 0.52185647, 0.53347216,
           0.54311702, 0.55115888, 0.55780898, 0.56360578, 0.56911693,
           0.57370753, 0.57754161, 0.58070799, 0.58333684, 0.58553607,
           0.58734952, 0.58962779, 0.59180646, 0.59364078, 0.59516199,
           0.59644205, 0.59749115, 0.59837571, 0.59909904, 0.59971064,
           0.60020939, 0.6006325 , 0.60097642, 0.60126932, 0.60150647,
           0.60170939, 0.60187289, 0.6020136 , 0.60212631, 0.60222397,
           0.60230602, 0.6023707 , 0.6024271 , 0.60247148, 0.60251067,
           0.60254397, 0.60256948, 0.6025922 , 0.60261166, 0.60262621,
           0.60263938, 0.6026508 , 0.60265903, 0.60266799, 0.60267415,
           0.60267971]), 'nulldev': array([0.71665039, 1.22201514, 1.94477545, ..., 0.48518478, 1.44347715,
           0.36306899]), 'df': array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3,
           3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7,
           7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
           7, 7, 7, 7, 7, 7, 7, 7, 8, 8]), 'lambdau': array([7.90539283e-01, 7.20309952e-01, 6.56319601e-01, 5.98013976e-01,
           5.44888063e-01, 4.96481709e-01, 4.52375642e-01, 4.12187837e-01,
           3.75570206e-01, 3.42205584e-01, 3.11804983e-01, 2.84105088e-01,
           2.58865975e-01, 2.35869035e-01, 2.14915080e-01, 1.95822617e-01,
           1.78426275e-01, 1.62575377e-01, 1.48132628e-01, 1.34972934e-01,
           1.22982310e-01, 1.12056901e-01, 1.02102075e-01, 9.30316077e-02,
           8.47669361e-02, 7.72364751e-02, 7.03749995e-02, 6.41230785e-02,
           5.84265609e-02, 5.32361063e-02, 4.85067573e-02, 4.41975507e-02,
           4.02711621e-02, 3.66935831e-02, 3.34338263e-02, 3.04636573e-02,
           2.77573499e-02, 2.52914635e-02, 2.30446396e-02, 2.09974173e-02,
           1.91320646e-02, 1.74324247e-02, 1.58837762e-02, 1.44727053e-02,
           1.31869900e-02, 1.20154942e-02, 1.09480708e-02, 9.97547435e-03,
           9.08928070e-03, 8.28181406e-03, 7.54608052e-03, 6.87570753e-03,
           6.26488862e-03, 5.70833318e-03, 5.20122059e-03, 4.73915849e-03,
           4.31814471e-03, 3.93453264e-03, 3.58499960e-03, 3.26651812e-03,
           2.97632965e-03, 2.71192073e-03, 2.47100117e-03, 2.25148423e-03,
           2.05146858e-03, 1.86922176e-03, 1.70316525e-03, 1.55186075e-03,
           1.41399772e-03, 1.28838206e-03, 1.17392574e-03, 1.06963742e-03,
           9.74613777e-04, 8.88031775e-04, 8.09141480e-04, 7.37259581e-04]), 'npasses': 800, 'jerr': 0, 'dim': array([ 8, 76]), 'offset': False, 'class': 'elnet'}, 'lambda_min': array([0.00297633]), 'lambda_1se': array([0.01588378]), 'class': 'cvglmnet'}

2 - GLMNet + nnetsauce

import glmnetforpython as glmnet
import mlsauce as ms
import nnetsauce as ns
from sklearn.datasets import load_breast_cancer, load_wine, load_iris
from sklearn.model_selection import train_test_split
from time import time


for dataset in [load_breast_cancer, load_wine, load_iris]:

    print(f"\n\n dataset: {dataset.__name__} -----")
    X, y = dataset(return_X_y=True)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
                                                        random_state=123)

    regr = ms.MultiTaskRegressor(glmnet.GLMNet(lambdau=1000))

    model = ms.GenericBoostingClassifier(regr, tolerance=1e-2)

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    accuracy = model.score(X_test, y_test)
    print(f"Accuracy: {accuracy}")

    clf = ns.CustomClassifier(ns.MultitaskClassifier(glmnet.GLMNet(lambdau=1000)),
                              n_hidden_features=10)

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    accuracy = model.score(X_test, y_test)
    print(f"Accuracy: {accuracy}")


    clf = ns.CustomClassifier(ns.SimpleMultitaskClassifier(glmnet.GLMNet(lambdau=1000)))

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    accuracy = model.score(X_test, y_test)
    print(f"Accuracy: {accuracy}")

    clf = ns.DeepClassifier(ns.MultitaskClassifier(glmnet.GLMNet(lambdau=1000)))

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    accuracy = model.score(X_test, y_test)
    print(f"Accuracy: {accuracy}")

    clf = ns.DeepClassifier(ns.SimpleMultitaskClassifier(glmnet.GLMNet(lambdau=1000)))

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    accuracy = model.score(X_test, y_test)
    print(f"Accuracy: {accuracy}")
    /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.
      and should_run_async(code)


    
    
     dataset: load_breast_cancer -----


    100%|██████████| 100/100 [00:18<00:00,  5.46it/s]


    Training time: 18.33358597755432 seconds
    Accuracy: 0.9649122807017544


    100%|██████████| 100/100 [00:18<00:00,  5.31it/s]


    Training time: 18.904021501541138 seconds
    Accuracy: 0.9649122807017544


    100%|██████████| 100/100 [00:12<00:00,  8.24it/s]


    Training time: 12.280655860900879 seconds
    Accuracy: 0.9649122807017544


    100%|██████████| 100/100 [00:23<00:00,  4.32it/s]


    Training time: 23.297285318374634 seconds
    Accuracy: 0.9649122807017544


    100%|██████████| 100/100 [00:24<00:00,  4.08it/s]


    Training time: 24.91062593460083 seconds
    Accuracy: 0.9649122807017544
    
    
     dataset: load_wine -----


    100%|██████████| 100/100 [00:03<00:00, 28.64it/s]


    Training time: 3.5058298110961914 seconds
    Accuracy: 1.0


    100%|██████████| 100/100 [00:05<00:00, 16.76it/s]


    Training time: 6.019681453704834 seconds
    Accuracy: 1.0


    100%|██████████| 100/100 [00:08<00:00, 11.76it/s]


    Training time: 8.692431688308716 seconds
    Accuracy: 1.0


    100%|██████████| 100/100 [00:20<00:00,  4.85it/s]


    Training time: 20.893232583999634 seconds
    Accuracy: 1.0


    100%|██████████| 100/100 [00:13<00:00,  7.42it/s]


    Training time: 13.870125532150269 seconds
    Accuracy: 1.0
    
    
     dataset: load_iris -----


     14%|█▍        | 14/100 [00:00<00:05, 16.97it/s]


    Training time: 0.8306210041046143 seconds
    Accuracy: 0.9333333333333333


    100%|██████████| 14/14 [00:00<00:00, 35.76it/s]


    Training time: 0.40160202980041504 seconds
    Accuracy: 0.9333333333333333


    100%|██████████| 14/14 [00:00<00:00, 30.18it/s]


    Training time: 0.47559595108032227 seconds
    Accuracy: 0.9333333333333333


    100%|██████████| 14/14 [00:00<00:00, 30.39it/s]


    Training time: 0.4738032817840576 seconds
    Accuracy: 0.9333333333333333


    100%|██████████| 14/14 [00:00<00:00, 26.63it/s]

    Training time: 0.5447156429290771 seconds
    Accuracy: 0.9333333333333333
from sklearn.datasets import load_diabetes, fetch_california_housing

for dataset in [load_diabetes, fetch_california_housing]:

    print(f"\n\n dataset: {dataset.__name__} -----")

    X, y = dataset(return_X_y=True)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
                                                        random_state=123)

    regr = glmnet.GLMNet(lambdau=1000)

    model = ms.GenericBoostingRegressor(regr, backend="cpu", tolerance=1e-2)

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    preds = model.predict(X_test)
    rmse = ((preds - y_test)**2).mean()**0.5
    print(f"RMSE: {rmse}")

    model = ns.CustomRegressor(regr)

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    preds = model.predict(X_test)
    rmse = ((preds - y_test)**2).mean()**0.5
    print(f"RMSE: {rmse}")


    model = ns.DeepRegressor(regr)

    # Train the model on the training datac
    start_time = time()
    model.fit(X_train, y_train)
    end_time = time()
    print(f"Training time: {end_time - start_time} seconds")

    # Evaluate the model's performance (e.g., using accuracy)
    preds = model.predict(X_test)
    rmse = ((preds - y_test)**2).mean()**0.5
    print(f"RMSE: {rmse}")
    /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.
      and should_run_async(code)


    
    
     dataset: load_diabetes -----


     57%|█████▋    | 57/100 [00:00<00:00, 230.67it/s]


    Training time: 0.25351572036743164 seconds
    RMSE: 50.47735955241068
    Training time: 0.04386782646179199 seconds
    RMSE: 51.2098185574396
    Training time: 0.09994053840637207 seconds
    RMSE: 51.02354464725009
    
    
     dataset: fetch_california_housing -----


     52%|█████▏    | 52/100 [00:00<00:00, 58.32it/s]


    Training time: 0.9048025608062744 seconds
    RMSE: 0.8216935762732704
    Training time: 0.1747438907623291 seconds
    RMSE: 0.8218417233321206
    Training time: 0.512531042098999 seconds
    RMSE: 0.8218417233321208

xxx

Comments powered by Talkyard.