In this post, I use the following Python packages:

  • BCN: for adjusting Boosted Configuration Networks regression (see post 1 and post 2 for more details on BCNs, and this notebook for classification examples) to sklearn’s diabetes dataset.

  • the-teller: for interpreting BCNs, and obtaining prediction intervals. So far, as of october 2022, the-teller contains two methods for constructing prediction intervals: split conformal and local conformal. For more details on both of these methods, the interested reader can consult [1]. Despite their potential drawbacks (listed in [1]), they’re model-agnostic, i.e they do not require in particular for the user to adjust a quantile regression model.

Content

  • 0 - Install packages
  • 1 - Import packages + load data
  • 2 - Adjust BCN model to training set, evaluation on test set
  • 3 - Adjust the teller’s Explainer to test set
  • 4 - Prediction intervals on test set
    • 4 - 1 Split conformal
    • 4 - 2 Local conformal
  • 5 - Plot prediction intervals

0 - Install packages

Package implementing Boosted Configuration Networks

pip install BCN

Package for Machine Learning Explainability on tabular data

pip install the-teller

Other packages

pip install scikit-learn numpy

1 - Import packages + load data

import BCN as bcn # takes a long time to run, ONLY the first time it's run
import teller as tr
import numpy as np
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn import metrics
from time import time

import diabetes dataset

dataset = load_diabetes()
X = dataset.data
y = dataset.target

# split data into training test and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, 
                                                    test_size=0.2, random_state=13)

2 - Adjust BCN model to training set, evaluation on test set

start = time()

regr_bcn = bcn.BCNRegressor(**{'B': 122,
 'nu': 0.7862040612242153,
 'col_sample': 0.6797268557618982,
 'lam': 0.9244772287770061,
 'r': 0.18915458607547728,
 'tol': 9.670499926559012e-10})

regr_bcn.fit(X_train, y_train)

print(f"\nElapsed {time() - start}") 

preds = regr_bcn.predict(X_test)

# Test set RMSE
print(np.sqrt(np.mean(np.square(y_test - preds))))
Elapsed 0.641953706741333
54.50979209778048

3 - Adjust the teller’s Explainer to test set

start = time()

# creating an Explainer for the fitted object `regr_bcn`
expr = tr.Explainer(obj=regr_bcn)

# confidence int. and tests on covariates' effects (Jackknife)
expr.fit(X_test, y_test, X_names=dataset.feature_names, method="ci")

# summary of results
expr.summary()

# timing
print(f"\n Elapsed: {time()-start}")
Score (rmse): 
 54.51


Residuals: 
       Min         1Q   Median        3Q        Max
-119.79528 -30.293474 9.749065 45.169791 124.891462


Tests on marginal effects (Jackknife): 
       Estimate Std. Error  95% lbound  95% ubound  Pr(>|t|)     
bmi  534.170652  10.538064  513.228463   555.11284       0.0  ***
s5   460.090298    11.7154  436.808403  483.372194       0.0  ***
bp   245.510926   7.073121  231.454584  259.567267       0.0  ***
s6   117.899033   8.865569  100.280578  135.517488       0.0  ***
s4     71.20425   4.885591   61.495165   80.913336       0.0  ***
age    3.144209   7.616405  -11.991795   18.280213  0.680742    -
s1    -31.76086   8.823018  -49.294754  -14.226967  0.000526  ***
s2  -104.139443   8.596589 -121.223357  -87.055529       0.0  ***
sex -167.461194    3.92965 -175.270546 -159.651841       0.0  ***
s3  -210.749954   5.580957 -221.840934 -199.658975       0.0  ***


Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1 - 1


Multiple R-squared:  0.394,	Adjusted R-squared:  0.316

 Elapsed: 0.1125936508178711

For more details on this output, you can read this post applying the-teller to xgboost’s explanation.

4 - Prediction intervals on test set

4 - 1 Split conformal

pi = tr.PredictionInterval(regr_bcn, method="splitconformal", level=0.95)
pi.fit(X_train, y_train)
preds = pi.predict(X_test, return_pi=True)
pred = preds[0]
y_lower = preds[1]
y_upper = preds[2]
print(len(pred))

# compute and display the average coverage
print(np.mean((y_test >= y_lower) & (y_test <= y_upper)))

# prediction interval's length
length_pi = y_upper - y_lower
print(np.mean(length_pi))
89
0.9438202247191011
209.55455918396666

4 - 2 Local conformal

pi2 = tr.PredictionInterval(regr_bcn, method="localconformal", level=0.95)
pi2.fit(X_train, y_train)
preds2 = pi2.predict(X_test, return_pi=True)
pred2 = preds2[0]
y_lower2 = preds2[1]
y_upper2 = preds2[2]
print(len(pred2))

# compute and display the average coverage
print(np.mean((y_test >= y_lower2) & (y_test <= y_upper2)))

# prediction interval's length
length_pi2 = y_upper2 - y_lower2
print(np.mean(length_pi2))
89
0.9550561797752809
229.03014949955275

5 - Plot prediction intervals

import warnings
warnings.filterwarnings('ignore')

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

import numpy as np
np.warnings.filterwarnings('ignore')


split_color = 'tomato'
local_color = 'gray'

%matplotlib inline
np.random.seed(1)


def plot_func(x,
              y,
              y_u=None,
              y_l=None,
              pred=None,
              shade_color="",
              method_name="",
              title=""):
        
    fig = plt.figure()
    
    plt.plot(x, y, 'k.', alpha=.3, markersize=10,
             fillstyle='full', label=u'Test set observations')
    
    if (y_u is not None) and (y_l is not None):
        plt.fill(np.concatenate([x, x[::-1]]),
                 np.concatenate([y_u, y_l[::-1]]),
                 alpha=.3, fc=shade_color, ec='None',
                 label = method_name + ' Prediction interval')
    
    if pred is not None:        
        plt.plot(x, pred, 'k--', lw=2, alpha=0.9,
                 label=u'Predicted value')
    
    #plt.ylim([-2.5, 7])
    plt.xlabel('$X$')
    plt.ylabel('$Y$')
    plt.legend(loc='upper right')
    plt.title(title)
    
    plt.show()

Split conformal

max_idx = 25
plot_func(x = range(max_idx),
          y = y_test[0:max_idx],
          y_u = y_upper[0:max_idx],
          y_l = y_lower[0:max_idx],
          pred = pred[0:max_idx],
          shade_color=split_color, 
          title = f"Split conformal ({max_idx} first points in test set)")

Split conformal prediction interval

Local conformal

max_idx = 25
plot_func(x = range(max_idx),
          y = y_test[0:max_idx],
          y_u = y_upper2[0:max_idx],
          y_l = y_lower2[0:max_idx],
          pred = pred2[0:max_idx],
          shade_color=local_color, 
          title = f"Local conformal ({max_idx} first points in test set)")

Local conformal prediction interval


[1] Romano, Y., Patterson, E., & Candes, E. (2019). Conformalized quantile regression. Advances in neural information processing systems, 32.

Comments powered by Talkyard.