Today, give a try to Techtonique web app, a tool designed to help you make informed, data-driven decisions using Mathematics, Statistics, Machine Learning, and Data Visualization. Here is a tutorial with audio, video, code, and slides: https://moudiki2.gumroad.com/l/nrhgb. 100 API requests are now (and forever) offered to every user every month, no matter the pricing tier.
This post/notebook demonstrates the usage of the cybooster
library for boosting various scikit-learn-like (having fit
and predict
methods is enough, for GPU learning see e.g slides 35-38 https://www.researchgate.net/publication/382589729_Probabilistic_Forecasting_with_nnetsauce_using_Density_Estimation_Bayesian_inference_Conformal_prediction_and_Vine_copulas) estimators on different datasets. It includes examples of regression and classification and time series forecasting tasks. It’s worth mentioning that only regressors are accepted in cybooster
, no matter the task.
cybooster
is a high-performance generic gradient boosting (any based learner can be used) library designed for classification and regression tasks. It is built on Cython (that is, C) for speed and efficiency. This version will also be more GPU friendly, thanks to JAX, making it suitable for large datasets.
In cybooster
, each base learner is augmented with a randomized neural network (a generalization of https://www.researchgate.net/publication/346059361_LSBoost_gradient_boosted_penalized_nonlinear_least_squares to any base learner), which allows the model to learn complex patterns in the data. The library supports both classification and regression tasks, making it versatile for various machine learning applications.
cybooster
is born from mlsauce
, that might be difficult to install on some systems (for now). cybooster
installation is straightforward.
<!DOCTYPE html>
Boosting with Cybooster¶
This notebook demonstrates the usage of the cybooster
library for boosting various scikit-learn-like (having fit
and predict
methods is enough) estimators on different datasets. It includes examples of regression and classification and time series forecasting tasks. It's worth mentioning that only regressors are accepted in cybooster
, no matter the task.
cybooster
is a high-performance generic gradient boosting (any based learner can be used) library designed for classification and regression tasks. It is built on Cython (that is, C) for speed and efficiency. This version will also be more GPU friendly, thanks to JAX, making it suitable for large datasets.
In cybooster
, each base learner is augmented with a randomized neural network (a generalization of https://www.researchgate.net/publication/346059361_LSBoost_gradient_boosted_penalized_nonlinear_least_squares to any base learner), which allows the model to learn complex patterns in the data. The library supports both classification and regression tasks, making it versatile for various machine learning applications.
cybooster
is born from mlsauce
, that might be difficult to install on some systems (for now). cybooster
installation is straightforward.
!pip install cybooster --upgrade --no-cache-dir
1 - Simple example¶
from cybooster import BoosterClassifier, BoosterRegressor
from sklearn.datasets import load_iris, load_diabetes, load_breast_cancer, load_digits, load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error, root_mean_squared_error
from sklearn.linear_model import LinearRegression
from time import time
# Regression Examples
X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
regressor = BoosterRegressor(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print(f"Elapsed: {time() - start} s")
rmse = root_mean_squared_error(y_test, y_pred)
print(f"RMSE for regression: {rmse:.4f}")
# Classification Example
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
X, y = load_wine(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
100%|██████████| 100/100 [00:00<00:00, 246.01it/s]
Elapsed: 0.47596025466918945 s RMSE for regression: 50.0380
100%|██████████| 100/100 [00:00<00:00, 373.52it/s]
Elapsed: 0.3156728744506836 s Accuracy for classification: 1.0000
100%|██████████| 100/100 [00:00<00:00, 314.06it/s]
Elapsed: 0.40644145011901855 s Accuracy for classification: 1.0000
100%|██████████| 100/100 [00:00<00:00, 244.04it/s]
Elapsed: 0.47872471809387207 s Accuracy for classification: 0.9649
100%|██████████| 100/100 [00:07<00:00, 12.72it/s]
Elapsed: 7.97456169128418 s Accuracy for classification: 0.9500
2 - Loop on models¶
import pandas as pd
from sklearn.utils import all_estimators
from tqdm import tqdm
from sklearn.utils.multiclass import type_of_target
from sklearn.datasets import fetch_california_housing
# Get all scikit-learn regressors
estimators = all_estimators(type_filter='regressor')
results_regressors = []
results_classifiers = []
verbose = 0
for name, RegressorClass in tqdm(estimators):
if name in ['MultiOutputRegressor', 'MultiOutputClassifier', 'StackingRegressor', 'StackingClassifier',
'VotingRegressor', 'VotingClassifier', 'TransformedTargetRegressor', 'RegressorChain',
'GradientBoostingRegressor', 'HistGradientBoostingRegressor', 'RandomForestRegressor',
'ExtraTreesRegressor', 'MLPRegressor']:
continue
try:
print(f"\nRunning with {name}")
# Regression Examples
X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
regressor = BoosterRegressor(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print(f"Elapsed: {time() - start} s")
rmse = root_mean_squared_error(y_test, y_pred)
print(f"RMSE for regression: {rmse:.4f}")
results_regressors.append(["diabetes", name, rmse])
X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X[:1000,:], y[:1000], test_size=0.2, random_state=42)
regressor = BoosterRegressor(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print(f"Elapsed: {time() - start} s")
rmse = root_mean_squared_error(y_test, y_pred)
print(f"RMSE for regression: {rmse:.4f}")
results_regressors.append(["housing", name, rmse])
# Classification Example
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["iris", name, accuracy])
X, y = load_wine(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["wine", name, accuracy])
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["breast_cancer", name, accuracy])
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["digits", name, accuracy])
except Exception as e:
continue
0%| | 0/55 [00:00<?, ?it/s]
Running with ARDRegression Elapsed: 4.067568063735962 s RMSE for regression: 50.7652
2%|▏ | 1/55 [00:05<04:50, 5.37s/it]
Elapsed: 0.5349180698394775 s RMSE for regression: 0.4230 Running with AdaBoostRegressor Elapsed: 13.95115351676941 s RMSE for regression: 52.9127
4%|▎ | 2/55 [00:40<20:10, 22.85s/it]
Elapsed: 21.075905323028564 s RMSE for regression: 0.3281 Running with BaggingRegressor Elapsed: 7.636256456375122 s RMSE for regression: 54.6999 Elapsed: 19.565755367279053 s RMSE for regression: 0.3489 Elapsed: 4.050839185714722 s Accuracy for classification: 1.0000 Elapsed: 4.740557432174683 s Accuracy for classification: 0.9722 Elapsed: 30.266514778137207 s Accuracy for classification: 0.9561
5%|▌ | 3/55 [02:56<1:04:47, 74.76s/it]
Elapsed: 70.22430944442749 s Accuracy for classification: 0.9667 Running with BayesianRidge Elapsed: 0.4146571159362793 s RMSE for regression: 50.7598
7%|▋ | 4/55 [02:57<38:45, 45.59s/it]
Elapsed: 0.43773674964904785 s RMSE for regression: 0.4328 Running with CCA Running with DecisionTreeRegressor Elapsed: 0.7410914897918701 s RMSE for regression: 61.0645 Elapsed: 1.557697057723999 s RMSE for regression: 0.3849 Elapsed: 0.17411327362060547 s Accuracy for classification: 1.0000 Elapsed: 0.23183941841125488 s Accuracy for classification: 0.9444 Elapsed: 1.1447832584381104 s Accuracy for classification: 0.9386
11%|█ | 6/55 [03:08<19:42, 24.13s/it]
Elapsed: 6.3166093826293945 s Accuracy for classification: 0.8583 Running with DummyRegressor Elapsed: 0.002477407455444336 s RMSE for regression: 73.2225 Elapsed: 0.0028095245361328125 s RMSE for regression: 0.8700 Elapsed: 0.002324819564819336 s Accuracy for classification: 0.3000 Elapsed: 0.0029370784759521484 s Accuracy for classification: 0.3889 Elapsed: 0.002457141876220703 s Accuracy for classification: 0.6228 Elapsed: 0.006379127502441406 s Accuracy for classification: 0.0778 Running with ElasticNet Elapsed: 0.21411395072937012 s RMSE for regression: 50.7735 Elapsed: 0.06587982177734375 s RMSE for regression: 0.7325 Elapsed: 0.004933595657348633 s Accuracy for classification: 0.3000 Elapsed: 0.018543004989624023 s Accuracy for classification: 0.5000 Elapsed: 0.07728099822998047 s Accuracy for classification: 0.8246
15%|█▍ | 8/55 [03:08<10:50, 13.84s/it]
Elapsed: 0.01873159408569336 s Accuracy for classification: 0.0778 Running with ElasticNetCV
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 112.89592220750637, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 128.3038635815028, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 247.1341176360147, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 486.1988488805946, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 784.5043447295902, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 1102.4658735985868, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 140.82631352648605, tolerance: 87.47497652464158 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 218.82325083913747, tolerance: 87.47497652464158 model = cd_fast.enet_coordinate_descent_gram(
Elapsed: 2.569856882095337 s RMSE for regression: 51.2435
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.563e-01, tolerance: 5.639e-02 model = cd_fast.enet_coordinate_descent( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.01844095233536791, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019053917357496175, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019578735700491734, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02007739698248656, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020544804312748965, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.018613786399754417, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019346221465838198, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020100450668991243, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020841008689245655, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02156436111957305, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022268942931702895, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022953504915847134, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023617016648358913, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.024258654154323267, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.024877789833169572, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.025473981057871242, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.026046956769647522, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02659660303572764, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.027122949192801116, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( 16%|█▋ | 9/55 [03:17<09:39, 12.60s/it]
Elapsed: 5.964995384216309 s RMSE for regression: 0.4343 Running with ExtraTreeRegressor Elapsed: 0.5135252475738525 s RMSE for regression: 55.0715 Elapsed: 0.8700869083404541 s RMSE for regression: 0.3468 Elapsed: 0.23128819465637207 s Accuracy for classification: 0.9333 Elapsed: 0.24360942840576172 s Accuracy for classification: 1.0000 Elapsed: 0.404954195022583 s Accuracy for classification: 0.9649
18%|█▊ | 10/55 [03:21<07:50, 10.46s/it]
Elapsed: 1.7572131156921387 s Accuracy for classification: 0.9750 Running with GammaRegressor Running with GaussianProcessRegressor Elapsed: 2.515669107437134 s RMSE for regression: 66.6183 Elapsed: 21.384825706481934 s RMSE for regression: 0.5012 Elapsed: 1.1286356449127197 s Accuracy for classification: 1.0000 Elapsed: 0.8197286128997803 s Accuracy for classification: 0.8333 Elapsed: 6.324432849884033 s Accuracy for classification: 0.6316
24%|██▎ | 13/55 [05:38<20:04, 28.69s/it]
Elapsed: 104.5441346168518 s Accuracy for classification: 0.2278 Running with HuberRegressor
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)
Elapsed: 6.84102463722229 s RMSE for regression: 50.3546
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) 29%|██▉ | 16/55 [05:49<11:46, 18.11s/it]
Elapsed: 4.643861532211304 s RMSE for regression: 0.3731 Running with IsotonicRegression Running with KNeighborsRegressor Elapsed: 0.4125041961669922 s RMSE for regression: 219.8186 Elapsed: 0.8057188987731934 s RMSE for regression: 1.0007 Elapsed: 0.2951483726501465 s Accuracy for classification: 1.0000 Elapsed: 0.2155454158782959 s Accuracy for classification: 0.9722 Elapsed: 0.48292994499206543 s Accuracy for classification: 0.8860
33%|███▎ | 18/55 [05:59<08:49, 14.31s/it]
Elapsed: 7.595134258270264 s Accuracy for classification: 0.9583 Running with KernelRidge Elapsed: 3.8773553371429443 s RMSE for regression: 50.1380 Elapsed: 8.994706153869629 s RMSE for regression: 0.4238 Elapsed: 0.26732659339904785 s Accuracy for classification: 0.9333 Elapsed: 2.3327672481536865 s Accuracy for classification: 1.0000 Elapsed: 2.790550470352173 s Accuracy for classification: 0.9649
35%|███▍ | 19/55 [06:43<11:38, 19.40s/it]
Elapsed: 25.78620409965515 s Accuracy for classification: 0.9528 Running with Lars Elapsed: 0.49329423904418945 s RMSE for regression: 249.1971 Elapsed: 0.4653139114379883 s RMSE for regression: 0.5482
/usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /tmp/ipython-input-3-1908891270.py:63: RuntimeWarning: invalid value encountered in divide y_pred = classifier.predict(X_test)
Elapsed: 1.0182015895843506 s Accuracy for classification: 0.2667 Elapsed: 1.2435550689697266 s Accuracy for classification: 0.7778
/usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2])
Elapsed: 2.609036684036255 s Accuracy for classification: 0.5263
36%|███▋ | 20/55 [07:08<11:54, 20.41s/it]
Elapsed: 18.63607382774353 s Accuracy for classification: 0.3000 Running with LarsCV
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_least_angle.py:1782: RuntimeWarning: overflow encountered in square this_residues **= 2 /usr/local/lib/python3.11/dist-packages/numpy/_core/_methods.py:127: RuntimeWarning: overflow encountered in reduce ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
Elapsed: 0.5618622303009033 s RMSE for regression: 52.9366
38%|███▊ | 21/55 [07:09<09:12, 16.25s/it]
Elapsed: 0.8049659729003906 s RMSE for regression: 0.4644 Running with Lasso Elapsed: 0.12689447402954102 s RMSE for regression: 50.4909 Elapsed: 0.0041234493255615234 s RMSE for regression: 0.8700 Elapsed: 0.003805398941040039 s Accuracy for classification: 0.3000 Elapsed: 0.0037839412689208984 s Accuracy for classification: 0.3889
40%|████ | 22/55 [07:09<06:50, 12.44s/it]
Elapsed: 0.05577516555786133 s Accuracy for classification: 0.8158 Elapsed: 0.01977252960205078 s Accuracy for classification: 0.0778 Running with LassoCV
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 317.52212504216004, tolerance: 154.0146518765138 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 144.0533658415079, tolerance: 141.33659978862596 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 174.53022669022903, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 183.26798344869167, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 179.42592350719497, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 175.49414929072373, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 171.57872029172722, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 167.7166886071209, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 148.35612110048532, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 111.78356304205954, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 110.09647969075013, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 108.39252084807958, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 106.81509780022316, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 105.26875228597783, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 103.7037648720434, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.10120411240496, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 100.45545270503499, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 98.77053709188476, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 97.05502607498784, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.9222919390304, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.53227501921356, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.38933223718777, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 101.79188120178878, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 100.83558642177377, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 89.00294200354256, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 104.1522828565212, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 138.49915823084302, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 133.87998348439578, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 131.82629990996793, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 129.62818823207635, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 127.41157688794192, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 125.19555049564224, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 122.99960242689122, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 120.83921127428766, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 118.72662654845044, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 116.67136431008112, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 114.68064011528622, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 112.75974068650976, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 110.91234024986625, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 152.5421148543246, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 205.31913998734672, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 228.15475974429864, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 226.42392032465432, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 223.7742731551407, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 221.30642683897167, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 218.9439692631131, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 216.6904894829495, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 90.3512492638547, tolerance: 85.94415173158598 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 88.81189212342724, tolerance: 85.94415173158598 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 146.84668073127978, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 157.4734253481729, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 155.9137303645257, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 155.11699756479356, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 87.77085321000777, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 131.39713218645193, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 137.27333439909853, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 135.04798892932013, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 195.42062068043742, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 201.96060798759572, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 199.13703059148975, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 195.87486037088092, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 192.55928672093432, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 189.23988940985873, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 185.9469244570937, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 182.70432192564476, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 179.53103500325233, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 176.44182968884706, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 173.4479441496078, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 170.5576557915192, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 167.77677187882364, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 110.12410479143728, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 185.86888815276325, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05973225785720615, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.060021889653967264, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05887167296060625, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05756191258191734, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.056196200048788114, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05480062380777895, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05339327221227563, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram(
Elapsed: 4.114358425140381 s RMSE for regression: 51.3331
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05198873448142649, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.056744729521227555, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.08719778204854833, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.08955161702490955, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05513965079506988, tolerance: 0.04574617081780452 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.047695980345991984, tolerance: 0.04725777134932967 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.565e+00, tolerance: 5.657e-02 model = cd_fast.enet_coordinate_descent( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.025355479298866612, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.025415058969514348, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.024719548793427748, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02428357638868306, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023827574797280704, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02339974115449195, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022993218867469523, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023654342946059614, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02359402124324106, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023133791117572855, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022653344865631198, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02218325782146735, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.021727384801550897, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.021287168980137494, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02086352702519889, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020457048296407265, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020068059479996236, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019696672034996254, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019342821801330956, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.01900630281951976, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.01868679588076816, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( 42%|████▏ | 23/55 [07:20<06:25, 12.05s/it]
Elapsed: 6.785216331481934 s RMSE for regression: 0.4348 Running with LassoLars
44%|████▎ | 24/55 [07:21<04:37, 8.94s/it]
Elapsed: 0.20097756385803223 s RMSE for regression: 50.4911 Elapsed: 0.004069805145263672 s RMSE for regression: 0.8700 Elapsed: 0.0033965110778808594 s Accuracy for classification: 0.3000 Elapsed: 0.003522157669067383 s Accuracy for classification: 0.3889 Elapsed: 0.09224557876586914 s Accuracy for classification: 0.8158 Elapsed: 0.014913558959960938 s Accuracy for classification: 0.0778 Running with LassoLarsCV Elapsed: 0.5652470588684082 s RMSE for regression: 51.6581
45%|████▌ | 25/55 [07:22<03:29, 6.98s/it]
Elapsed: 1.2313728332519531 s RMSE for regression: 0.4311 Running with LassoLarsIC Elapsed: 0.2026379108428955 s RMSE for regression: 50.8669
47%|████▋ | 26/55 [07:23<02:29, 5.17s/it]
Elapsed: 0.33669328689575195 s RMSE for regression: 0.4233 Running with LinearRegression Elapsed: 0.19397854804992676 s RMSE for regression: 50.0380 Elapsed: 0.25861597061157227 s RMSE for regression: 0.3969 Elapsed: 0.1840972900390625 s Accuracy for classification: 1.0000 Elapsed: 0.17545342445373535 s Accuracy for classification: 1.0000 Elapsed: 0.3274402618408203 s Accuracy for classification: 0.9649
49%|████▉ | 27/55 [07:28<02:22, 5.08s/it]
Elapsed: 3.6779396533966064 s Accuracy for classification: 0.9500 Running with LinearSVR Elapsed: 0.28504157066345215 s RMSE for regression: 49.1958
/usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( 51%|█████ | 28/55 [07:33<02:16, 5.06s/it]
Elapsed: 4.671899795532227 s RMSE for regression: 0.3761 Running with MultiTaskElasticNet Running with MultiTaskElasticNetCV Running with MultiTaskLasso Running with MultiTaskLassoCV Running with NuSVR Elapsed: 1.2875077724456787 s RMSE for regression: 51.9660
64%|██████▎ | 35/55 [07:44<00:48, 2.44s/it]
Elapsed: 9.450008869171143 s RMSE for regression: 0.3469 Running with OrthogonalMatchingPursuit Elapsed: 0.16147136688232422 s RMSE for regression: 50.7979 Elapsed: 0.17341041564941406 s RMSE for regression: 0.4546 Elapsed: 0.1641554832458496 s Accuracy for classification: 0.9667 Elapsed: 0.20760297775268555 s Accuracy for classification: 1.0000 Elapsed: 0.330524206161499 s Accuracy for classification: 0.9825
65%|██████▌ | 36/55 [07:46<00:45, 2.39s/it]
Elapsed: 0.996509313583374 s Accuracy for classification: 0.9583 Running with OrthogonalMatchingPursuitCV Elapsed: 0.63850998878479 s RMSE for regression: 50.7995
67%|██████▋ | 37/55 [07:47<00:40, 2.23s/it]
Elapsed: 0.7047955989837646 s RMSE for regression: 0.4388 Running with PLSCanonical Running with PLSRegression Elapsed: 0.21582293510437012 s RMSE for regression: 49.8776 Elapsed: 0.24137067794799805 s RMSE for regression: 0.4261 Elapsed: 0.24464106559753418 s Accuracy for classification: 1.0000 Elapsed: 0.2733957767486572 s Accuracy for classification: 1.0000 Elapsed: 0.2548189163208008 s Accuracy for classification: 0.9737
71%|███████ | 39/55 [07:51<00:35, 2.22s/it]
Elapsed: 3.1161069869995117 s Accuracy for classification: 0.9306 Running with PassiveAggressiveRegressor Elapsed: 0.18162250518798828 s RMSE for regression: 49.0170
73%|███████▎ | 40/55 [07:52<00:28, 1.90s/it]
Elapsed: 0.2270033359527588 s RMSE for regression: 0.4127 Running with PoissonRegressor Running with QuantileRegressor Elapsed: 3.2531702518463135 s RMSE for regression: 72.8862
76%|███████▋ | 42/55 [08:01<00:37, 2.86s/it]
Elapsed: 6.122649192810059 s RMSE for regression: 0.8528 Running with RANSACRegressor Elapsed: 12.880609035491943 s RMSE for regression: 58.8836 Elapsed: 12.161862134933472 s RMSE for regression: 0.4726
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning)
Elapsed: 11.872267007827759 s Accuracy for classification: 0.5000 Elapsed: 13.281305074691772 s Accuracy for classification: 0.3889 Elapsed: 15.801233768463135 s Accuracy for classification: 0.8421
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) 78%|███████▊ | 43/55 [12:36<11:15, 56.26s/it]
Elapsed: 208.6714358329773 s Accuracy for classification: 0.5306 Running with RadiusNeighborsRegressor
/usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) 80%|████████ | 44/55 [12:37<08:05, 44.13s/it]
Elapsed: 0.9109394550323486 s Running with Ridge Elapsed: 0.17456555366516113 s RMSE for regression: 50.1804 Elapsed: 0.19010615348815918 s RMSE for regression: 0.3978 Elapsed: 0.1613008975982666 s Accuracy for classification: 1.0000 Elapsed: 0.18721652030944824 s Accuracy for classification: 1.0000 Elapsed: 0.3114893436431885 s Accuracy for classification: 0.9649
85%|████████▌ | 47/55 [12:39<03:04, 23.03s/it]
Elapsed: 0.601301908493042 s Accuracy for classification: 0.9500 Running with RidgeCV Elapsed: 0.2643613815307617 s RMSE for regression: 50.1530 Elapsed: 0.42165279388427734 s RMSE for regression: 0.4030 Elapsed: 0.24331355094909668 s Accuracy for classification: 1.0000 Elapsed: 0.25229525566101074 s Accuracy for classification: 1.0000 Elapsed: 2.254711627960205 s Accuracy for classification: 0.9649
87%|████████▋ | 48/55 [12:48<02:23, 20.50s/it]
Elapsed: 5.993970155715942 s Accuracy for classification: 0.9500 Running with SGDRegressor Elapsed: 0.21875286102294922 s RMSE for regression: 49.7408
89%|████████▉ | 49/55 [12:49<01:37, 16.28s/it]
Elapsed: 0.2683231830596924 s RMSE for regression: 0.4215 Running with SVR Elapsed: 1.8788957595825195 s RMSE for regression: 49.4323
91%|█████████ | 50/55 [12:59<01:14, 15.00s/it]
Elapsed: 8.855087757110596 s RMSE for regression: 0.3460 Running with TheilSenRegressor Elapsed: 153.34134554862976 s RMSE for regression: 49.0028
95%|█████████▍| 52/55 [17:56<03:24, 68.07s/it]
Elapsed: 143.07517862319946 s RMSE for regression: 0.3840 Running with TweedieRegressor Elapsed: 0.6265287399291992 s RMSE for regression: 50.5897
100%|██████████| 55/55 [17:57<00:00, 19.59s/it]
Elapsed: 0.4339334964752197 s RMSE for regression: 0.4447
df_results_regressors = pd.DataFrame(results_regressors, columns=['Dataset', 'Model', 'RMSE'])
df_results_regressors.sort_values(by='RMSE', ascending=True, inplace=True)
df_results_classifiers = pd.DataFrame(results_classifiers, columns=['Dataset', 'Model', 'Accuracy'])
df_results_classifiers.sort_values(by='Accuracy', ascending=False, inplace=True)
df_results_regressors_diabetes = df_results_regressors[df_results_regressors['Dataset'] == 'diabetes']
df_results_regressors_housing = df_results_regressors[df_results_regressors['Dataset'] == 'housing']
df_results_classifiers_iris = df_results_classifiers[df_results_classifiers['Dataset'] == 'iris']
df_results_classifiers_wine = df_results_classifiers[df_results_classifiers['Dataset'] == 'wine']
df_results_classifiers_breast_cancer = df_results_classifiers[df_results_classifiers['Dataset'] == 'breast_cancer']
df_results_classifiers_digits = df_results_classifiers[df_results_classifiers['Dataset'] == 'digits']
print("Best regressors:")
display(df_results_regressors_diabetes)
display(df_results_regressors_housing)
print("\nBest classifiers:")
display(df_results_classifiers_iris)
display(df_results_classifiers_wine)
display(df_results_classifiers_breast_cancer)
display(df_results_classifiers_digits)
Best regressors:
Dataset | Model | RMSE | |
---|---|---|---|
66 | diabetes | TheilSenRegressor | 49.002812 |
52 | diabetes | PassiveAggressiveRegressor | 49.017006 |
42 | diabetes | LinearSVR | 49.195826 |
64 | diabetes | SVR | 49.432314 |
62 | diabetes | SGDRegressor | 49.740770 |
50 | diabetes | PLSRegression | 49.877624 |
40 | diabetes | LinearRegression | 50.038024 |
24 | diabetes | KernelRidge | 50.137963 |
60 | diabetes | RidgeCV | 50.153038 |
58 | diabetes | Ridge | 50.180423 |
20 | diabetes | HuberRegressor | 50.354598 |
30 | diabetes | Lasso | 50.490869 |
34 | diabetes | LassoLars | 50.491092 |
68 | diabetes | TweedieRegressor | 50.589740 |
6 | diabetes | BayesianRidge | 50.759803 |
0 | diabetes | ARDRegression | 50.765231 |
12 | diabetes | ElasticNet | 50.773545 |
46 | diabetes | OrthogonalMatchingPursuit | 50.797879 |
48 | diabetes | OrthogonalMatchingPursuitCV | 50.799486 |
38 | diabetes | LassoLarsIC | 50.866918 |
14 | diabetes | ElasticNetCV | 51.243455 |
32 | diabetes | LassoCV | 51.333102 |
36 | diabetes | LassoLarsCV | 51.658117 |
44 | diabetes | NuSVR | 51.965976 |
2 | diabetes | AdaBoostRegressor | 52.912706 |
28 | diabetes | LarsCV | 52.936573 |
4 | diabetes | BaggingRegressor | 54.699888 |
16 | diabetes | ExtraTreeRegressor | 55.071533 |
56 | diabetes | RANSACRegressor | 58.883571 |
8 | diabetes | DecisionTreeRegressor | 61.064470 |
18 | diabetes | GaussianProcessRegressor | 66.618258 |
54 | diabetes | QuantileRegressor | 72.886227 |
10 | diabetes | DummyRegressor | 73.222493 |
22 | diabetes | KNeighborsRegressor | 219.818565 |
26 | diabetes | Lars | 249.197131 |
Dataset | Model | RMSE | |
---|---|---|---|
3 | housing | AdaBoostRegressor | 0.328082 |
65 | housing | SVR | 0.345998 |
17 | housing | ExtraTreeRegressor | 0.346823 |
45 | housing | NuSVR | 0.346886 |
5 | housing | BaggingRegressor | 0.348871 |
21 | housing | HuberRegressor | 0.373068 |
43 | housing | LinearSVR | 0.376118 |
67 | housing | TheilSenRegressor | 0.384006 |
9 | housing | DecisionTreeRegressor | 0.384891 |
41 | housing | LinearRegression | 0.396910 |
59 | housing | Ridge | 0.397799 |
61 | housing | RidgeCV | 0.402997 |
53 | housing | PassiveAggressiveRegressor | 0.412686 |
63 | housing | SGDRegressor | 0.421484 |
1 | housing | ARDRegression | 0.423014 |
39 | housing | LassoLarsIC | 0.423339 |
25 | housing | KernelRidge | 0.423757 |
51 | housing | PLSRegression | 0.426112 |
37 | housing | LassoLarsCV | 0.431140 |
7 | housing | BayesianRidge | 0.432840 |
15 | housing | ElasticNetCV | 0.434310 |
33 | housing | LassoCV | 0.434807 |
49 | housing | OrthogonalMatchingPursuitCV | 0.438809 |
69 | housing | TweedieRegressor | 0.444735 |
47 | housing | OrthogonalMatchingPursuit | 0.454569 |
29 | housing | LarsCV | 0.464425 |
57 | housing | RANSACRegressor | 0.472617 |
19 | housing | GaussianProcessRegressor | 0.501228 |
27 | housing | Lars | 0.548208 |
13 | housing | ElasticNet | 0.732468 |
55 | housing | QuantileRegressor | 0.852777 |
35 | housing | LassoLars | 0.869965 |
11 | housing | DummyRegressor | 0.869965 |
31 | housing | Lasso | 0.869965 |
23 | housing | KNeighborsRegressor | 1.000700 |
Best classifiers:
Dataset | Model | Accuracy | |
---|---|---|---|
0 | iris | BaggingRegressor | 1.000000 |
24 | iris | KNeighborsRegressor | 1.000000 |
4 | iris | DecisionTreeRegressor | 1.000000 |
52 | iris | PLSRegression | 1.000000 |
20 | iris | GaussianProcessRegressor | 1.000000 |
44 | iris | LinearRegression | 1.000000 |
64 | iris | RidgeCV | 1.000000 |
60 | iris | Ridge | 1.000000 |
48 | iris | OrthogonalMatchingPursuit | 0.966667 |
28 | iris | KernelRidge | 0.933333 |
16 | iris | ExtraTreeRegressor | 0.933333 |
56 | iris | RANSACRegressor | 0.500000 |
12 | iris | ElasticNet | 0.300000 |
8 | iris | DummyRegressor | 0.300000 |
40 | iris | LassoLars | 0.300000 |
36 | iris | Lasso | 0.300000 |
32 | iris | Lars | 0.266667 |
Dataset | Model | Accuracy | |
---|---|---|---|
17 | wine | ExtraTreeRegressor | 1.000000 |
53 | wine | PLSRegression | 1.000000 |
61 | wine | Ridge | 1.000000 |
29 | wine | KernelRidge | 1.000000 |
49 | wine | OrthogonalMatchingPursuit | 1.000000 |
65 | wine | RidgeCV | 1.000000 |
45 | wine | LinearRegression | 1.000000 |
1 | wine | BaggingRegressor | 0.972222 |
25 | wine | KNeighborsRegressor | 0.972222 |
5 | wine | DecisionTreeRegressor | 0.944444 |
21 | wine | GaussianProcessRegressor | 0.833333 |
33 | wine | Lars | 0.777778 |
13 | wine | ElasticNet | 0.500000 |
37 | wine | Lasso | 0.388889 |
41 | wine | LassoLars | 0.388889 |
57 | wine | RANSACRegressor | 0.388889 |
9 | wine | DummyRegressor | 0.388889 |
Dataset | Model | Accuracy | |
---|---|---|---|
50 | breast_cancer | OrthogonalMatchingPursuit | 0.982456 |
54 | breast_cancer | PLSRegression | 0.973684 |
30 | breast_cancer | KernelRidge | 0.964912 |
66 | breast_cancer | RidgeCV | 0.964912 |
46 | breast_cancer | LinearRegression | 0.964912 |
62 | breast_cancer | Ridge | 0.964912 |
18 | breast_cancer | ExtraTreeRegressor | 0.964912 |
2 | breast_cancer | BaggingRegressor | 0.956140 |
6 | breast_cancer | DecisionTreeRegressor | 0.938596 |
26 | breast_cancer | KNeighborsRegressor | 0.885965 |
58 | breast_cancer | RANSACRegressor | 0.842105 |
14 | breast_cancer | ElasticNet | 0.824561 |
38 | breast_cancer | Lasso | 0.815789 |
42 | breast_cancer | LassoLars | 0.815789 |
22 | breast_cancer | GaussianProcessRegressor | 0.631579 |
10 | breast_cancer | DummyRegressor | 0.622807 |
34 | breast_cancer | Lars | 0.526316 |
Dataset | Model | Accuracy | |
---|---|---|---|
19 | digits | ExtraTreeRegressor | 0.975000 |
3 | digits | BaggingRegressor | 0.966667 |
51 | digits | OrthogonalMatchingPursuit | 0.958333 |
27 | digits | KNeighborsRegressor | 0.958333 |
31 | digits | KernelRidge | 0.952778 |
47 | digits | LinearRegression | 0.950000 |
63 | digits | Ridge | 0.950000 |
67 | digits | RidgeCV | 0.950000 |
55 | digits | PLSRegression | 0.930556 |
7 | digits | DecisionTreeRegressor | 0.858333 |
59 | digits | RANSACRegressor | 0.530556 |
35 | digits | Lars | 0.300000 |
23 | digits | GaussianProcessRegressor | 0.227778 |
11 | digits | DummyRegressor | 0.077778 |
15 | digits | ElasticNet | 0.077778 |
39 | digits | Lasso | 0.077778 |
43 | digits | LassoLars | 0.077778 |
3 - Time series forecasting using nnetsauce.MTS
¶
!pip install nnetsauce
import nnetsauce as ns
import pandas as pd
from sklearn.utils import all_estimators
from tqdm import tqdm
from sklearn.utils.multiclass import type_of_target
from sklearn.datasets import fetch_california_housing
# Get all scikit-learn regressors
estimators = all_estimators(type_filter='regressor')
results_regressors = []
results_classifiers = []
verbose = 0
url = "https://raw.githubusercontent.com/Techtonique/"
url += "datasets/main/time_series/multivariate/"
url += "ice_cream_vs_heater.csv"
df_temp = pd.read_csv(url)
df_temp.index = pd.DatetimeIndex(df_temp.date)
# must have# first other difference
df_icecream = df_temp.drop(columns=['date']).diff().dropna()
for name, RegressorClass in tqdm(estimators):
if name in ['AdaBoostRegressor', 'MultiOutputRegressor', 'MultiOutputClassifier', 'StackingRegressor', 'StackingClassifier',
'VotingRegressor', 'VotingClassifier', 'TransformedTargetRegressor', 'RegressorChain',
'GradientBoostingRegressor', 'HistGradientBoostingRegressor', 'RandomForestRegressor',
'ExtraTreesRegressor', 'MLPRegressor', 'TheilSenRegressor']:
continue
try:
print(f"\nRunning with {name}")
# Regression Examples
mdl = BoosterRegressor(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
regr = ns.MTS(obj=mdl,
type_pi="scp2-kde",
replications=250,
lags=20,
show_progress=False)
regr.fit(df_icecream)
regr.predict(h=30)
regr.plot("heater", type_plot="pi")
except Exception as e:
print(e)
continue
0%| | 0/55 [00:00<?, ?it/s]
Running with ARDRegression
2%|▏ | 1/55 [00:37<34:11, 37.98s/it]
Running with BaggingRegressor
5%|▌ | 3/55 [01:16<20:55, 24.15s/it]
Running with BayesianRidge
7%|▋ | 4/55 [01:21<14:54, 17.55s/it]
Running with CCA `n_components` upper bound is 1. Got 2 instead. Reduce `n_components`. Running with DecisionTreeRegressor
11%|█ | 6/55 [01:26<08:14, 10.09s/it]
Running with DummyRegressor
13%|█▎ | 7/55 [01:28<06:13, 7.79s/it]
Running with ElasticNet
15%|█▍ | 8/55 [01:30<05:01, 6.43s/it]
Running with ElasticNetCV
16%|█▋ | 9/55 [02:29<16:07, 21.04s/it]
Running with ExtraTreeRegressor
18%|█▊ | 10/55 [02:33<12:12, 16.27s/it]
Running with GammaRegressor Some value(s) of y are out of the valid range of the loss 'HalfGammaLoss'. Running with GaussianProcessRegressor
24%|██▎ | 13/55 [02:39<05:52, 8.40s/it]
Running with HuberRegressor
29%|██▉ | 16/55 [03:01<05:08, 7.91s/it]
Running with IsotonicRegression Isotonic regression input X should be a 1d array or 2d array with 1 feature Running with KNeighborsRegressor
33%|███▎ | 18/55 [03:06<03:55, 6.37s/it]
Running with KernelRidge
35%|███▍ | 19/55 [03:15<04:01, 6.70s/it]
Running with Lars
36%|███▋ | 20/55 [03:16<03:15, 5.57s/it]
Input y contains NaN. Running with LarsCV
38%|███▊ | 21/55 [03:25<03:38, 6.41s/it]
Running with Lasso
40%|████ | 22/55 [03:28<03:00, 5.46s/it]
Running with LassoCV
42%|████▏ | 23/55 [04:36<11:27, 21.47s/it]
Running with LassoLars
44%|████▎ | 24/55 [04:38<08:29, 16.44s/it]
Running with LassoLarsCV
45%|████▌ | 25/55 [04:47<07:08, 14.30s/it]
Running with LassoLarsIC
47%|████▋ | 26/55 [04:52<05:37, 11.66s/it]
Running with LinearRegression
49%|████▉ | 27/55 [04:57<04:31, 9.69s/it]
Running with LinearSVR
62%|██████▏ | 34/55 [05:04<00:53, 2.55s/it]
Running with MultiTaskElasticNet For mono-task outputs, use ElasticNet Running with MultiTaskElasticNetCV For mono-task outputs, use ElasticNetCVCV Running with MultiTaskLasso For mono-task outputs, use ElasticNet Running with MultiTaskLassoCV For mono-task outputs, use LassoCVCV Running with NuSVR
Running with OrthogonalMatchingPursuit
65%|██████▌ | 36/55 [05:12<00:56, 2.97s/it]
Running with OrthogonalMatchingPursuitCV
67%|██████▋ | 37/55 [05:17<00:59, 3.31s/it]
Running with PLSCanonical `n_components` upper bound is 1. Got 2 instead. Reduce `n_components`. Running with PLSRegression
71%|███████ | 39/55 [05:23<00:49, 3.08s/it]
Running with PassiveAggressiveRegressor
73%|███████▎ | 40/55 [05:26<00:46, 3.10s/it]
Running with PoissonRegressor Some value(s) of y are out of the valid range of the loss 'HalfPoissonLoss'. Running with QuantileRegressor
76%|███████▋ | 42/55 [05:34<00:45, 3.46s/it]
Running with RANSACRegressor
78%|███████▊ | 43/55 [07:41<05:28, 27.39s/it]
Running with RadiusNeighborsRegressor
80%|████████ | 44/55 [07:44<04:04, 22.19s/it]
All the 750 fits failed. It is very likely that your model is misconfigured. You can try to debug the error by setting error_score='raise'. Below are more details about the failures: -------------------------------------------------------------------------------- 750 fits failed with the following error: Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/sklearn/model_selection/_validation.py", line 864, in _fit_and_score estimator.fit(X_train, **fit_params) File "/usr/local/lib/python3.11/dist-packages/sklearn/base.py", line 1389, in wrapper return fit_method(estimator, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_kde.py", line 229, in fit X = validate_data(self, X, order="C", dtype=np.float64) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 2944, in validate_data out = check_array(X, input_name="X", **check_params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 1107, in check_array _assert_all_finite( File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 120, in _assert_all_finite _assert_all_finite_element_wise( File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 169, in _assert_all_finite_element_wise raise ValueError(msg_err) ValueError: Input X contains NaN. KernelDensity does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values Running with Ridge
85%|████████▌ | 47/55 [07:47<01:36, 12.02s/it]
Running with RidgeCV
87%|████████▋ | 48/55 [07:52<01:14, 10.61s/it]
Running with SGDRegressor
89%|████████▉ | 49/55 [07:55<00:54, 9.11s/it]
Running with SVR
91%|█████████ | 50/55 [08:00<00:40, 8.17s/it]
Running with TweedieRegressor
100%|██████████| 55/55 [08:06<00:00, 8.84s/it]
For attribution, please cite this work as:
T. Moudiki (2025-07-26). Boosting any randomized based learner for regression, classification and univariate/multivariate time series forcasting. Retrieved from https://thierrymoudiki.github.io/blog/2025/07/26/python/cybooster
BibTeX citation (remove empty spaces)@misc{ tmoudiki20250726, author = { T. Moudiki }, title = { Boosting any randomized based learner for regression, classification and univariate/multivariate time series forcasting }, url = { https://thierrymoudiki.github.io/blog/2025/07/26/python/cybooster }, year = { 2025 } }
Previous publications
- I'm supposed to present 'Conformal Predictive Simulations for Univariate Time Series' at COPA CONFERENCE 2025 in London... Sep 4, 2025
- external regressors in ahead::dynrmf's interface for Machine learning forecasting Sep 1, 2025
- Another interesting decision, now for 'Beyond Nelson-Siegel and splines: A model-agnostic Machine Learning framework for discount curve calibration, interpolation and extrapolation' Aug 20, 2025
- Boosting any randomized based learner for regression, classification and univariate/multivariate time series forcasting Jul 26, 2025
- New nnetsauce version with CustomBackPropRegressor (CustomRegressor with Backpropagation) and ElasticNet2Regressor (Ridge2 with ElasticNet regularization) Jul 15, 2025
- mlsauce (home to a model-agnostic gradient boosting algorithm) can now be installed from PyPI. Jul 10, 2025
- A user-friendly graphical interface to techtonique dot net's API (will eventually contain graphics). Jul 8, 2025
- Calling =TECHTO_MLCLASSIFICATION for Machine Learning supervised CLASSIFICATION in Excel is just a matter of copying and pasting Jul 7, 2025
- Calling =TECHTO_MLREGRESSION for Machine Learning supervised regression in Excel is just a matter of copying and pasting Jul 6, 2025
- Calling =TECHTO_RESERVING and =TECHTO_MLRESERVING for claims triangle reserving in Excel is just a matter of copying and pasting Jul 5, 2025
- Calling =TECHTO_SURVIVAL for Survival Analysis in Excel is just a matter of copying and pasting Jul 4, 2025
- Calling =TECHTO_SIMULATION for Stochastic Simulation in Excel is just a matter of copying and pasting Jul 3, 2025
- Calling =TECHTO_FORECAST for forecasting in Excel is just a matter of copying and pasting Jul 2, 2025
- Random Vector Functional Link (RVFL) artificial neural network with 2 regularization parameters successfully used for forecasting/synthetic simulation in professional settings: Extensions (including Bayesian) Jul 1, 2025
- R version of 'Backpropagating quasi-randomized neural networks' Jun 24, 2025
- Backpropagating quasi-randomized neural networks Jun 23, 2025
- Beyond ARMA-GARCH: leveraging any statistical model for volatility forecasting Jun 21, 2025
- Stacked generalization (Machine Learning model stacking) + conformal prediction for forecasting with ahead::mlf Jun 18, 2025
- An Overfitting dilemma: XGBoost Default Hyperparameters vs GenericBooster + LinearRegression Default Hyperparameters Jun 14, 2025
- Programming language-agnostic reserving using RidgeCV, LightGBM, XGBoost, and ExtraTrees Machine Learning models Jun 13, 2025
- Exceptionally, and on a more personal note (otherwise I may get buried alive)... Jun 10, 2025
- Free R, Python and SQL editors in techtonique dot net Jun 9, 2025
- Beyond Nelson-Siegel and splines: A model-agnostic Machine Learning framework for discount curve calibration, interpolation and extrapolation Jun 7, 2025
- scikit-learn, glmnet, xgboost, lightgbm, pytorch, keras, nnetsauce in probabilistic Machine Learning (for longitudinal data) Reserving (work in progress) Jun 6, 2025
- R version of Probabilistic Machine Learning (for longitudinal data) Reserving (work in progress) Jun 5, 2025
- Probabilistic Machine Learning (for longitudinal data) Reserving (work in progress) Jun 4, 2025
- Python version of Beyond ARMA-GARCH: leveraging model-agnostic Quasi-Randomized networks and conformal prediction for nonparametric probabilistic stock forecasting (ML-ARCH) Jun 3, 2025
- Beyond ARMA-GARCH: leveraging model-agnostic Machine Learning and conformal prediction for nonparametric probabilistic stock forecasting (ML-ARCH) Jun 2, 2025
- Permutations and SHAPley values for feature importance in techtonique dot net's API (with R + Python + the command line) Jun 1, 2025
- Which patient is going to survive longer? Another guide to using techtonique dot net's API (with R + Python + the command line) for survival analysis May 31, 2025
- A Guide to Using techtonique.net's API and rush for simulating and plotting Stochastic Scenarios May 30, 2025
- Simulating Stochastic Scenarios with Diffusion Models: A Guide to Using techtonique.net's API for the purpose May 29, 2025
- Will my apartment in 5th avenue be overpriced or not? Harnessing the power of www.techtonique.net (+ xgboost, lightgbm, catboost) to find out May 28, 2025
- How long must I wait until something happens: A Comprehensive Guide to Survival Analysis via an API May 27, 2025
- Harnessing the Power of techtonique.net: A Comprehensive Guide to Machine Learning Classification via an API May 26, 2025
- Quantile regression with any regressor -- Examples with RandomForestRegressor, RidgeCV, KNeighborsRegressor May 20, 2025
- Survival stacking: survival analysis translated as supervised classification in R and Python May 5, 2025
- 'Bayesian' optimization of hyperparameters in a R machine learning model using the bayesianrvfl package Apr 25, 2025
- A lightweight interface to scikit-learn in R: Bayesian and Conformal prediction Apr 21, 2025
- A lightweight interface to scikit-learn in R Pt.2: probabilistic time series forecasting in conjunction with ahead::dynrmf Apr 20, 2025
- Extending the Theta forecasting method to GLMs, GAMs, GLMBOOST and attention: benchmarking on Tourism, M1, M3 and M4 competition data sets (28000 series) Apr 14, 2025
- Extending the Theta forecasting method to GLMs and attention Apr 8, 2025
- Nonlinear conformalized Generalized Linear Models (GLMs) with R package 'rvfl' (and other models) Mar 31, 2025
- Probabilistic Time Series Forecasting (predictive simulations) in Microsoft Excel using Python, xlwings lite and www.techtonique.net Mar 28, 2025
- Conformalize (improved prediction intervals and simulations) any R Machine Learning model with misc::conformalize Mar 25, 2025
- My poster for the 18th FINANCIAL RISKS INTERNATIONAL FORUM by Institut Louis Bachelier/Fondation du Risque/Europlace Institute of Finance Mar 19, 2025
- Interpretable probabilistic kernel ridge regression using Matérn 3/2 kernels Mar 16, 2025
- (News from) Probabilistic Forecasting of univariate and multivariate Time Series using Quasi-Randomized Neural Networks (Ridge2) and Conformal Prediction Mar 9, 2025
- Word-Online: re-creating Karpathy's char-RNN (with supervised linear online learning of word embeddings) for text completion Mar 8, 2025
- CRAN-like repository for most recent releases of Techtonique's R packages Mar 2, 2025
- Presenting 'Online Probabilistic Estimation of Carbon Beta and Carbon Shapley Values for Financial and Climate Risk' at Institut Louis Bachelier Feb 27, 2025
- Web app with DeepSeek R1 and Hugging Face API for chatting Feb 23, 2025
- tisthemachinelearner: A Lightweight interface to scikit-learn with 2 classes, Classifier and Regressor (in Python and R) Feb 17, 2025
- R version of survivalist: Probabilistic model-agnostic survival analysis using scikit-learn, xgboost, lightgbm (and conformal prediction) Feb 12, 2025
- Model-agnostic global Survival Prediction of Patients with Myeloid Leukemia in QRT/Gustave Roussy Challenge (challengedata.ens.fr): Python's survivalist Quickstart Feb 10, 2025
- A simple test of the martingale hypothesis in esgtoolkit Feb 3, 2025
- Command Line Interface (CLI) for techtonique.net's API Jan 31, 2025
- Gradient-Boosting and Boostrap aggregating anything (alert: high performance): Part5, easier install and Rust backend Jan 27, 2025
- Just got a paper on conformal prediction REJECTED by International Journal of Forecasting despite evidence on 30,000 time series (and more). What's going on? Part2: 1311 time series from the Tourism competition Jan 20, 2025
- Techtonique is out! (with a tutorial in various programming languages and formats) Jan 14, 2025
- Univariate and Multivariate Probabilistic Forecasting with nnetsauce and TabPFN Jan 14, 2025
- Just got a paper on conformal prediction REJECTED by International Journal of Forecasting despite evidence on 30,000 time series (and more). What's going on? Jan 5, 2025
- Python and Interactive dashboard version of Stock price forecasting with Deep Learning: throwing power at the problem (and why it won't make you rich) Dec 31, 2024
- Stock price forecasting with Deep Learning: throwing power at the problem (and why it won't make you rich) Dec 29, 2024
- No-code Machine Learning Cross-validation and Interpretability in techtonique.net Dec 23, 2024
- survivalist: Probabilistic model-agnostic survival analysis using scikit-learn, glmnet, xgboost, lightgbm, pytorch, keras, nnetsauce and mlsauce Dec 15, 2024
- Model-agnostic 'Bayesian' optimization (for hyperparameter tuning) using conformalized surrogates in GPopt Dec 9, 2024
- You can beat Forecasting LLMs (Large Language Models a.k.a foundation models) with nnetsauce.MTS Pt.2: Generic Gradient Boosting Dec 1, 2024
- You can beat Forecasting LLMs (Large Language Models a.k.a foundation models) with nnetsauce.MTS Nov 24, 2024
- Unified interface and conformal prediction (calibrated prediction intervals) for R package forecast (and 'affiliates') Nov 23, 2024
- GLMNet in Python: Generalized Linear Models Nov 18, 2024
- Gradient-Boosting anything (alert: high performance): Part4, Time series forecasting Nov 10, 2024
- Predictive scenarios simulation in R, Python and Excel using Techtonique API Nov 3, 2024
- Chat with your tabular data in www.techtonique.net Oct 30, 2024
- Gradient-Boosting anything (alert: high performance): Part3, Histogram-based boosting Oct 28, 2024
- R editor and SQL console (in addition to Python editors) in www.techtonique.net Oct 21, 2024
- R and Python consoles + JupyterLite in www.techtonique.net Oct 15, 2024
- Gradient-Boosting anything (alert: high performance): Part2, R version Oct 14, 2024
- Gradient-Boosting anything (alert: high performance) Oct 6, 2024
- Benchmarking 30 statistical/Machine Learning models on the VN1 Forecasting -- Accuracy challenge Oct 4, 2024
- Automated random variable distribution inference using Kullback-Leibler divergence and simulating best-fitting distribution Oct 2, 2024
- Forecasting in Excel using Techtonique's Machine Learning APIs under the hood Sep 30, 2024
- Techtonique web app for data-driven decisions using Mathematics, Statistics, Machine Learning, and Data Visualization Sep 25, 2024
- Parallel for loops (Map or Reduce) + New versions of nnetsauce and ahead Sep 16, 2024
- Adaptive (online/streaming) learning with uncertainty quantification using Polyak averaging in learningmachine Sep 10, 2024
- New versions of nnetsauce and ahead Sep 9, 2024
- Prediction sets and prediction intervals for conformalized Auto XGBoost, Auto LightGBM, Auto CatBoost, Auto GradientBoosting Sep 2, 2024
- Quick/automated R package development workflow (assuming you're using macOS or Linux) Part2 Aug 30, 2024
- R package development workflow (assuming you're using macOS or Linux) Aug 27, 2024
- A new method for deriving a nonparametric confidence interval for the mean Aug 26, 2024
- Conformalized adaptive (online/streaming) learning using learningmachine in Python and R Aug 19, 2024
- Bayesian (nonlinear) adaptive learning Aug 12, 2024
- Auto XGBoost, Auto LightGBM, Auto CatBoost, Auto GradientBoosting Aug 5, 2024
- Copulas for uncertainty quantification in time series forecasting Jul 28, 2024
- Forecasting uncertainty: sequential split conformal prediction + Block bootstrap (web app) Jul 22, 2024
- learningmachine for Python (new version) Jul 15, 2024
- learningmachine v2.0.0: Machine Learning with explanations and uncertainty quantification Jul 8, 2024
- My presentation at ISF 2024 conference (slides with nnetsauce probabilistic forecasting news) Jul 3, 2024
- 10 uncertainty quantification methods in nnetsauce forecasting Jul 1, 2024
- Forecasting with XGBoost embedded in Quasi-Randomized Neural Networks Jun 24, 2024
- Forecasting Monthly Airline Passenger Numbers with Quasi-Randomized Neural Networks Jun 17, 2024
- Automated hyperparameter tuning using any conformalized surrogate Jun 9, 2024
- Recognizing handwritten digits with Ridge2Classifier Jun 3, 2024
- Forecasting the Economy May 27, 2024
- A detailed introduction to Deep Quasi-Randomized 'neural' networks May 19, 2024
- Probability of receiving a loan; using learningmachine May 12, 2024
- mlsauce's `v0.18.2`: various examples and benchmarks with dimension reduction May 6, 2024
- mlsauce's `v0.17.0`: boosting with Elastic Net, polynomials and heterogeneity in explanatory variables Apr 29, 2024
- mlsauce's `v0.13.0`: taking into account inputs heterogeneity through clustering Apr 21, 2024
- mlsauce's `v0.12.0`: prediction intervals for LSBoostRegressor Apr 15, 2024
- Conformalized predictive simulations for univariate time series on more than 250 data sets Apr 7, 2024
- learningmachine v1.1.2: for Python Apr 1, 2024
- learningmachine v1.0.0: prediction intervals around the probability of the event 'a tumor being malignant' Mar 25, 2024
- Bayesian inference and conformal prediction (prediction intervals) in nnetsauce v0.18.1 Mar 18, 2024
- Multiple examples of Machine Learning forecasting with ahead Mar 11, 2024
- rtopy (v0.1.1): calling R functions in Python Mar 4, 2024
- ahead forecasting (v0.10.0): fast time series model calibration and Python plots Feb 26, 2024
- A plethora of datasets at your fingertips Part3: how many times do couples cheat on each other? Feb 19, 2024
- nnetsauce's introduction as of 2024-02-11 (new version 0.17.0) Feb 11, 2024
- Tuning Machine Learning models with GPopt's new version Part 2 Feb 5, 2024
- Tuning Machine Learning models with GPopt's new version Jan 29, 2024
- Subsampling continuous and discrete response variables Jan 22, 2024
- DeepMTS, a Deep Learning Model for Multivariate Time Series Jan 15, 2024
- A classifier that's very accurate (and deep) Pt.2: there are > 90 classifiers in nnetsauce Jan 8, 2024
- learningmachine: prediction intervals for conformalized Kernel ridge regression and Random Forest Jan 1, 2024
- A plethora of datasets at your fingertips Part2: how many times do couples cheat on each other? Descriptive analytics, interpretability and prediction intervals using conformal prediction Dec 25, 2023
- Diffusion models in Python with esgtoolkit (Part2) Dec 18, 2023
- Diffusion models in Python with esgtoolkit Dec 11, 2023
- Julia packaging at the command line Dec 4, 2023
- Quasi-randomized nnetworks in Julia, Python and R Nov 27, 2023
- A plethora of datasets at your fingertips Nov 20, 2023
- A classifier that's very accurate (and deep) Nov 12, 2023
- mlsauce version 0.8.10: Statistical/Machine Learning with Python and R Nov 5, 2023
- AutoML in nnetsauce (randomized and quasi-randomized nnetworks) Pt.2: multivariate time series forecasting Oct 29, 2023
- AutoML in nnetsauce (randomized and quasi-randomized nnetworks) Oct 22, 2023
- Version v0.14.0 of nnetsauce for R and Python Oct 16, 2023
- A diffusion model: G2++ Oct 9, 2023
- Diffusion models in ESGtoolkit + announcements Oct 2, 2023
- An infinity of time series forecasting models in nnetsauce (Part 2 with uncertainty quantification) Sep 25, 2023
- (News from) forecasting in Python with ahead (progress bars and plots) Sep 18, 2023
- Forecasting in Python with ahead Sep 11, 2023
- Risk-neutralize simulations Sep 4, 2023
- Comparing cross-validation results using crossval_ml and boxplots Aug 27, 2023
- Reminder Apr 30, 2023
- Did you ask ChatGPT about who you are? Apr 16, 2023
- A new version of nnetsauce (randomized and quasi-randomized 'neural' networks) Apr 2, 2023
- Simple interfaces to the forecasting API Nov 23, 2022
- A web application for forecasting in Python, R, Ruby, C#, JavaScript, PHP, Go, Rust, Java, MATLAB, etc. Nov 2, 2022
- Prediction intervals (not only) for Boosted Configuration Networks in Python Oct 5, 2022
- Boosted Configuration (neural) Networks Pt. 2 Sep 3, 2022
- Boosted Configuration (_neural_) Networks for classification Jul 21, 2022
- A Machine Learning workflow using Techtonique Jun 6, 2022
- Super Mario Bros © in the browser using PyScript May 8, 2022
- News from ESGtoolkit, ycinterextra, and nnetsauce Apr 4, 2022
- Explaining a Keras _neural_ network predictions with the-teller Mar 11, 2022
- New version of nnetsauce -- various quasi-randomized networks Feb 12, 2022
- A dashboard illustrating bivariate time series forecasting with `ahead` Jan 14, 2022
- Hundreds of Statistical/Machine Learning models for univariate time series, using ahead, ranger, xgboost, and caret Dec 20, 2021
- Forecasting with `ahead` (Python version) Dec 13, 2021
- Tuning and interpreting LSBoost Nov 15, 2021
- Time series cross-validation using `crossvalidation` (Part 2) Nov 7, 2021
- Fast and scalable forecasting with ahead::ridge2f Oct 31, 2021
- Automatic Forecasting with `ahead::dynrmf` and Ridge regression Oct 22, 2021
- Forecasting with `ahead` Oct 15, 2021
- Classification using linear regression Sep 26, 2021
- `crossvalidation` and random search for calibrating support vector machines Aug 6, 2021
- parallel grid search cross-validation using `crossvalidation` Jul 31, 2021
- `crossvalidation` on R-universe, plus a classification example Jul 23, 2021
- Documentation and source code for GPopt, a package for Bayesian optimization Jul 2, 2021
- Hyperparameters tuning with GPopt Jun 11, 2021
- A forecasting tool (API) with examples in curl, R, Python May 28, 2021
- Bayesian Optimization with GPopt Part 2 (save and resume) Apr 30, 2021
- Bayesian Optimization with GPopt Apr 16, 2021
- Compatibility of nnetsauce and mlsauce with scikit-learn Mar 26, 2021
- Explaining xgboost predictions with the teller Mar 12, 2021
- An infinity of time series models in nnetsauce Mar 6, 2021
- New activation functions in mlsauce's LSBoost Feb 12, 2021
- 2020 recap, Gradient Boosting, Generalized Linear Models, AdaOpt with nnetsauce and mlsauce Dec 29, 2020
- A deeper learning architecture in nnetsauce Dec 18, 2020
- Classify penguins with nnetsauce's MultitaskClassifier Dec 11, 2020
- Bayesian forecasting for uni/multivariate time series Dec 4, 2020
- Generalized nonlinear models in nnetsauce Nov 28, 2020
- Boosting nonlinear penalized least squares Nov 21, 2020
- Statistical/Machine Learning explainability using Kernel Ridge Regression surrogates Nov 6, 2020
- NEWS Oct 30, 2020
- A glimpse into my PhD journey Oct 23, 2020
- Submitting R package to CRAN Oct 16, 2020
- Simulation of dependent variables in ESGtoolkit Oct 9, 2020
- Forecasting lung disease progression Oct 2, 2020
- New nnetsauce Sep 25, 2020
- Technical documentation Sep 18, 2020
- A new version of nnetsauce, and a new Techtonique website Sep 11, 2020
- Back next week, and a few announcements Sep 4, 2020
- Explainable 'AI' using Gradient Boosted randomized networks Pt2 (the Lasso) Jul 31, 2020
- LSBoost: Explainable 'AI' using Gradient Boosted randomized networks (with examples in R and Python) Jul 24, 2020
- nnetsauce version 0.5.0, randomized neural networks on GPU Jul 17, 2020
- Maximizing your tip as a waiter (Part 2) Jul 10, 2020
- New version of mlsauce, with Gradient Boosted randomized networks and stump decision trees Jul 3, 2020
- Announcements Jun 26, 2020
- Parallel AdaOpt classification Jun 19, 2020
- Comments section and other news Jun 12, 2020
- Maximizing your tip as a waiter Jun 5, 2020
- AdaOpt classification on MNIST handwritten digits (without preprocessing) May 29, 2020
- AdaOpt (a probabilistic classifier based on a mix of multivariable optimization and nearest neighbors) for R May 22, 2020
- AdaOpt May 15, 2020
- Custom errors for cross-validation using crossval::crossval_ml May 8, 2020
- Documentation+Pypi for the `teller`, a model-agnostic tool for Machine Learning explainability May 1, 2020
- Encoding your categorical variables based on the response variable and correlations Apr 24, 2020
- Linear model, xgboost and randomForest cross-validation using crossval::crossval_ml Apr 17, 2020
- Grid search cross-validation using crossval Apr 10, 2020
- Documentation for the querier, a query language for Data Frames Apr 3, 2020
- Time series cross-validation using crossval Mar 27, 2020
- On model specification, identification, degrees of freedom and regularization Mar 20, 2020
- Import data into the querier (now on Pypi), a query language for Data Frames Mar 13, 2020
- R notebooks for nnetsauce Mar 6, 2020
- Version 0.4.0 of nnetsauce, with fruits and breast cancer classification Feb 28, 2020
- Create a specific feed in your Jekyll blog Feb 21, 2020
- Git/Github for contributing to package development Feb 14, 2020
- Feedback forms for contributing Feb 7, 2020
- nnetsauce for R Jan 31, 2020
- A new version of nnetsauce (v0.3.1) Jan 24, 2020
- ESGtoolkit, a tool for Monte Carlo simulation (v0.2.0) Jan 17, 2020
- Search bar, new year 2020 Jan 10, 2020
- 2019 Recap, the nnetsauce, the teller and the querier Dec 20, 2019
- Understanding model interactions with the `teller` Dec 13, 2019
- Using the `teller` on a classifier Dec 6, 2019
- Benchmarking the querier's verbs Nov 29, 2019
- Composing the querier's verbs for data wrangling Nov 22, 2019
- Comparing and explaining model predictions with the teller Nov 15, 2019
- Tests for the significance of marginal effects in the teller Nov 8, 2019
- Introducing the teller Nov 1, 2019
- Introducing the querier Oct 25, 2019
- Prediction intervals for nnetsauce models Oct 18, 2019
- Using R in Python for statistical learning/data science Oct 11, 2019
- Model calibration with `crossval` Oct 4, 2019
- Bagging in the nnetsauce Sep 25, 2019
- Adaboost learning with nnetsauce Sep 18, 2019
- Change in blog's presentation Sep 4, 2019
- nnetsauce on Pypi Jun 5, 2019
- More nnetsauce (examples of use) May 9, 2019
- nnetsauce Mar 13, 2019
- crossval Mar 13, 2019
- test Mar 10, 2019
Comments powered by Talkyard.