Today, give a try to Techtonique web app, a tool designed to help you make informed, data-driven decisions using Mathematics, Statistics, Machine Learning, and Data Visualization. Here is a tutorial with audio, video, code, and slides: https://moudiki2.gumroad.com/l/nrhgb. 100 API requests are now (and forever) offered to every user every month, no matter the pricing tier.
This post/notebook demonstrates the usage of the cybooster
library for boosting various scikit-learn-like (having fit
and predict
methods is enough, for GPU learning see e.g slides 35-38 https://www.researchgate.net/publication/382589729_Probabilistic_Forecasting_with_nnetsauce_using_Density_Estimation_Bayesian_inference_Conformal_prediction_and_Vine_copulas) estimators on different datasets. It includes examples of regression and classification and time series forecasting tasks. It’s worth mentioning that only regressors are accepted in cybooster
, no matter the task.
cybooster
is a high-performance generic gradient boosting (any based learner can be used) library designed for classification and regression tasks. It is built on Cython (that is, C) for speed and efficiency. This version will also be more GPU friendly, thanks to JAX, making it suitable for large datasets.
In cybooster
, each base learner is augmented with a randomized neural network (a generalization of https://www.researchgate.net/publication/346059361_LSBoost_gradient_boosted_penalized_nonlinear_least_squares to any base learner), which allows the model to learn complex patterns in the data. The library supports both classification and regression tasks, making it versatile for various machine learning applications.
cybooster
is born from mlsauce
, that might be difficult to install on some systems (for now). cybooster
installation is straightforward.
<!DOCTYPE html>
Boosting with Cybooster¶
This notebook demonstrates the usage of the cybooster
library for boosting various scikit-learn-like (having fit
and predict
methods is enough) estimators on different datasets. It includes examples of regression and classification and time series forecasting tasks. It's worth mentioning that only regressors are accepted in cybooster
, no matter the task.
cybooster
is a high-performance generic gradient boosting (any based learner can be used) library designed for classification and regression tasks. It is built on Cython (that is, C) for speed and efficiency. This version will also be more GPU friendly, thanks to JAX, making it suitable for large datasets.
In cybooster
, each base learner is augmented with a randomized neural network (a generalization of https://www.researchgate.net/publication/346059361_LSBoost_gradient_boosted_penalized_nonlinear_least_squares to any base learner), which allows the model to learn complex patterns in the data. The library supports both classification and regression tasks, making it versatile for various machine learning applications.
cybooster
is born from mlsauce
, that might be difficult to install on some systems (for now). cybooster
installation is straightforward.
!pip install cybooster --upgrade --no-cache-dir
1 - Simple example¶
from cybooster import BoosterClassifier, BoosterRegressor
from sklearn.datasets import load_iris, load_diabetes, load_breast_cancer, load_digits, load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error, root_mean_squared_error
from sklearn.linear_model import LinearRegression
from time import time
# Regression Examples
X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
regressor = BoosterRegressor(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print(f"Elapsed: {time() - start} s")
rmse = root_mean_squared_error(y_test, y_pred)
print(f"RMSE for regression: {rmse:.4f}")
# Classification Example
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
X, y = load_wine(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
100%|██████████| 100/100 [00:00<00:00, 246.01it/s]
Elapsed: 0.47596025466918945 s RMSE for regression: 50.0380
100%|██████████| 100/100 [00:00<00:00, 373.52it/s]
Elapsed: 0.3156728744506836 s Accuracy for classification: 1.0000
100%|██████████| 100/100 [00:00<00:00, 314.06it/s]
Elapsed: 0.40644145011901855 s Accuracy for classification: 1.0000
100%|██████████| 100/100 [00:00<00:00, 244.04it/s]
Elapsed: 0.47872471809387207 s Accuracy for classification: 0.9649
100%|██████████| 100/100 [00:07<00:00, 12.72it/s]
Elapsed: 7.97456169128418 s Accuracy for classification: 0.9500
2 - Loop on models¶
import pandas as pd
from sklearn.utils import all_estimators
from tqdm import tqdm
from sklearn.utils.multiclass import type_of_target
from sklearn.datasets import fetch_california_housing
# Get all scikit-learn regressors
estimators = all_estimators(type_filter='regressor')
results_regressors = []
results_classifiers = []
verbose = 0
for name, RegressorClass in tqdm(estimators):
if name in ['MultiOutputRegressor', 'MultiOutputClassifier', 'StackingRegressor', 'StackingClassifier',
'VotingRegressor', 'VotingClassifier', 'TransformedTargetRegressor', 'RegressorChain',
'GradientBoostingRegressor', 'HistGradientBoostingRegressor', 'RandomForestRegressor',
'ExtraTreesRegressor', 'MLPRegressor']:
continue
try:
print(f"\nRunning with {name}")
# Regression Examples
X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
regressor = BoosterRegressor(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print(f"Elapsed: {time() - start} s")
rmse = root_mean_squared_error(y_test, y_pred)
print(f"RMSE for regression: {rmse:.4f}")
results_regressors.append(["diabetes", name, rmse])
X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X[:1000,:], y[:1000], test_size=0.2, random_state=42)
regressor = BoosterRegressor(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print(f"Elapsed: {time() - start} s")
rmse = root_mean_squared_error(y_test, y_pred)
print(f"RMSE for regression: {rmse:.4f}")
results_regressors.append(["housing", name, rmse])
# Classification Example
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["iris", name, accuracy])
X, y = load_wine(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["wine", name, accuracy])
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["breast_cancer", name, accuracy])
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
start = time()
try:
classifier.fit(X_train, y_train)
except Exception as e:
y_train = y_train.astype('int32')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")
results_classifiers.append(["digits", name, accuracy])
except Exception as e:
continue
0%| | 0/55 [00:00<?, ?it/s]
Running with ARDRegression Elapsed: 4.067568063735962 s RMSE for regression: 50.7652
2%|▏ | 1/55 [00:05<04:50, 5.37s/it]
Elapsed: 0.5349180698394775 s RMSE for regression: 0.4230 Running with AdaBoostRegressor Elapsed: 13.95115351676941 s RMSE for regression: 52.9127
4%|▎ | 2/55 [00:40<20:10, 22.85s/it]
Elapsed: 21.075905323028564 s RMSE for regression: 0.3281 Running with BaggingRegressor Elapsed: 7.636256456375122 s RMSE for regression: 54.6999 Elapsed: 19.565755367279053 s RMSE for regression: 0.3489 Elapsed: 4.050839185714722 s Accuracy for classification: 1.0000 Elapsed: 4.740557432174683 s Accuracy for classification: 0.9722 Elapsed: 30.266514778137207 s Accuracy for classification: 0.9561
5%|▌ | 3/55 [02:56<1:04:47, 74.76s/it]
Elapsed: 70.22430944442749 s Accuracy for classification: 0.9667 Running with BayesianRidge Elapsed: 0.4146571159362793 s RMSE for regression: 50.7598
7%|▋ | 4/55 [02:57<38:45, 45.59s/it]
Elapsed: 0.43773674964904785 s RMSE for regression: 0.4328 Running with CCA Running with DecisionTreeRegressor Elapsed: 0.7410914897918701 s RMSE for regression: 61.0645 Elapsed: 1.557697057723999 s RMSE for regression: 0.3849 Elapsed: 0.17411327362060547 s Accuracy for classification: 1.0000 Elapsed: 0.23183941841125488 s Accuracy for classification: 0.9444 Elapsed: 1.1447832584381104 s Accuracy for classification: 0.9386
11%|█ | 6/55 [03:08<19:42, 24.13s/it]
Elapsed: 6.3166093826293945 s Accuracy for classification: 0.8583 Running with DummyRegressor Elapsed: 0.002477407455444336 s RMSE for regression: 73.2225 Elapsed: 0.0028095245361328125 s RMSE for regression: 0.8700 Elapsed: 0.002324819564819336 s Accuracy for classification: 0.3000 Elapsed: 0.0029370784759521484 s Accuracy for classification: 0.3889 Elapsed: 0.002457141876220703 s Accuracy for classification: 0.6228 Elapsed: 0.006379127502441406 s Accuracy for classification: 0.0778 Running with ElasticNet Elapsed: 0.21411395072937012 s RMSE for regression: 50.7735 Elapsed: 0.06587982177734375 s RMSE for regression: 0.7325 Elapsed: 0.004933595657348633 s Accuracy for classification: 0.3000 Elapsed: 0.018543004989624023 s Accuracy for classification: 0.5000 Elapsed: 0.07728099822998047 s Accuracy for classification: 0.8246
15%|█▍ | 8/55 [03:08<10:50, 13.84s/it]
Elapsed: 0.01873159408569336 s Accuracy for classification: 0.0778 Running with ElasticNetCV
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 112.89592220750637, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 128.3038635815028, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 247.1341176360147, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 486.1988488805946, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 784.5043447295902, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 1102.4658735985868, tolerance: 84.5922708185914 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 140.82631352648605, tolerance: 87.47497652464158 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 218.82325083913747, tolerance: 87.47497652464158 model = cd_fast.enet_coordinate_descent_gram(
Elapsed: 2.569856882095337 s RMSE for regression: 51.2435
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.563e-01, tolerance: 5.639e-02 model = cd_fast.enet_coordinate_descent( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.01844095233536791, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019053917357496175, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019578735700491734, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02007739698248656, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020544804312748965, tolerance: 0.018259789785652028 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.018613786399754417, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019346221465838198, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020100450668991243, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020841008689245655, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02156436111957305, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022268942931702895, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022953504915847134, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023617016648358913, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.024258654154323267, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.024877789833169572, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.025473981057871242, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.026046956769647522, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02659660303572764, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.027122949192801116, tolerance: 0.018598570155131767 model = cd_fast.enet_coordinate_descent_gram( 16%|█▋ | 9/55 [03:17<09:39, 12.60s/it]
Elapsed: 5.964995384216309 s RMSE for regression: 0.4343 Running with ExtraTreeRegressor Elapsed: 0.5135252475738525 s RMSE for regression: 55.0715 Elapsed: 0.8700869083404541 s RMSE for regression: 0.3468 Elapsed: 0.23128819465637207 s Accuracy for classification: 0.9333 Elapsed: 0.24360942840576172 s Accuracy for classification: 1.0000 Elapsed: 0.404954195022583 s Accuracy for classification: 0.9649
18%|█▊ | 10/55 [03:21<07:50, 10.46s/it]
Elapsed: 1.7572131156921387 s Accuracy for classification: 0.9750 Running with GammaRegressor Running with GaussianProcessRegressor Elapsed: 2.515669107437134 s RMSE for regression: 66.6183 Elapsed: 21.384825706481934 s RMSE for regression: 0.5012 Elapsed: 1.1286356449127197 s Accuracy for classification: 1.0000 Elapsed: 0.8197286128997803 s Accuracy for classification: 0.8333 Elapsed: 6.324432849884033 s Accuracy for classification: 0.6316
24%|██▎ | 13/55 [05:38<20:04, 28.69s/it]
Elapsed: 104.5441346168518 s Accuracy for classification: 0.2278 Running with HuberRegressor
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)
Elapsed: 6.84102463722229 s RMSE for regression: 50.3546
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_huber.py:343: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) 29%|██▉ | 16/55 [05:49<11:46, 18.11s/it]
Elapsed: 4.643861532211304 s RMSE for regression: 0.3731 Running with IsotonicRegression Running with KNeighborsRegressor Elapsed: 0.4125041961669922 s RMSE for regression: 219.8186 Elapsed: 0.8057188987731934 s RMSE for regression: 1.0007 Elapsed: 0.2951483726501465 s Accuracy for classification: 1.0000 Elapsed: 0.2155454158782959 s Accuracy for classification: 0.9722 Elapsed: 0.48292994499206543 s Accuracy for classification: 0.8860
33%|███▎ | 18/55 [05:59<08:49, 14.31s/it]
Elapsed: 7.595134258270264 s Accuracy for classification: 0.9583 Running with KernelRidge Elapsed: 3.8773553371429443 s RMSE for regression: 50.1380 Elapsed: 8.994706153869629 s RMSE for regression: 0.4238 Elapsed: 0.26732659339904785 s Accuracy for classification: 0.9333 Elapsed: 2.3327672481536865 s Accuracy for classification: 1.0000 Elapsed: 2.790550470352173 s Accuracy for classification: 0.9649
35%|███▍ | 19/55 [06:43<11:38, 19.40s/it]
Elapsed: 25.78620409965515 s Accuracy for classification: 0.9528 Running with Lars Elapsed: 0.49329423904418945 s RMSE for regression: 249.1971 Elapsed: 0.4653139114379883 s RMSE for regression: 0.5482
/usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /tmp/ipython-input-3-1908891270.py:63: RuntimeWarning: invalid value encountered in divide y_pred = classifier.predict(X_test)
Elapsed: 1.0182015895843506 s Accuracy for classification: 0.2667 Elapsed: 1.2435550689697266 s Accuracy for classification: 0.7778
/usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2]) /usr/local/lib/python3.11/dist-packages/numpy/lib/_function_base_impl.py:1452: RuntimeWarning: invalid value encountered in subtract a = op(a[slice1], a[slice2])
Elapsed: 2.609036684036255 s Accuracy for classification: 0.5263
36%|███▋ | 20/55 [07:08<11:54, 20.41s/it]
Elapsed: 18.63607382774353 s Accuracy for classification: 0.3000 Running with LarsCV
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_least_angle.py:1782: RuntimeWarning: overflow encountered in square this_residues **= 2 /usr/local/lib/python3.11/dist-packages/numpy/_core/_methods.py:127: RuntimeWarning: overflow encountered in reduce ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
Elapsed: 0.5618622303009033 s RMSE for regression: 52.9366
38%|███▊ | 21/55 [07:09<09:12, 16.25s/it]
Elapsed: 0.8049659729003906 s RMSE for regression: 0.4644 Running with Lasso Elapsed: 0.12689447402954102 s RMSE for regression: 50.4909 Elapsed: 0.0041234493255615234 s RMSE for regression: 0.8700 Elapsed: 0.003805398941040039 s Accuracy for classification: 0.3000 Elapsed: 0.0037839412689208984 s Accuracy for classification: 0.3889
40%|████ | 22/55 [07:09<06:50, 12.44s/it]
Elapsed: 0.05577516555786133 s Accuracy for classification: 0.8158 Elapsed: 0.01977252960205078 s Accuracy for classification: 0.0778 Running with LassoCV
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 317.52212504216004, tolerance: 154.0146518765138 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 144.0533658415079, tolerance: 141.33659978862596 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 174.53022669022903, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 183.26798344869167, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 179.42592350719497, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 175.49414929072373, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 171.57872029172722, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 167.7166886071209, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 148.35612110048532, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 111.78356304205954, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 110.09647969075013, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 108.39252084807958, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 106.81509780022316, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 105.26875228597783, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 103.7037648720434, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.10120411240496, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 100.45545270503499, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 98.77053709188476, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 97.05502607498784, tolerance: 88.80234062251104 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.9222919390304, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.53227501921356, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 102.38933223718777, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 101.79188120178878, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 100.83558642177377, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 89.00294200354256, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 104.1522828565212, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 138.49915823084302, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 133.87998348439578, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 131.82629990996793, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 129.62818823207635, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 127.41157688794192, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 125.19555049564224, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 122.99960242689122, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 120.83921127428766, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 118.72662654845044, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 116.67136431008112, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 114.68064011528622, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 112.75974068650976, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 110.91234024986625, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 152.5421148543246, tolerance: 85.59733371640522 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 205.31913998734672, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 228.15475974429864, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 226.42392032465432, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 223.7742731551407, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 221.30642683897167, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 218.9439692631131, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 216.6904894829495, tolerance: 87.61180006815336 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 90.3512492638547, tolerance: 85.94415173158598 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 88.81189212342724, tolerance: 85.94415173158598 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 146.84668073127978, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 157.4734253481729, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 155.9137303645257, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 155.11699756479356, tolerance: 85.3577826508039 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 87.77085321000777, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 131.39713218645193, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 137.27333439909853, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 135.04798892932013, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 195.42062068043742, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 201.96060798759572, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 199.13703059148975, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 195.87486037088092, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 192.55928672093432, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 189.23988940985873, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 185.9469244570937, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 182.70432192564476, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 179.53103500325233, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 176.44182968884706, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 173.4479441496078, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 170.5576557915192, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 167.77677187882364, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 110.12410479143728, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 185.86888815276325, tolerance: 84.95349716263595 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05973225785720615, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.060021889653967264, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05887167296060625, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05756191258191734, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.056196200048788114, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05480062380777895, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05339327221227563, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram(
Elapsed: 4.114358425140381 s RMSE for regression: 51.3331
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05198873448142649, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.056744729521227555, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.08719778204854833, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.08955161702490955, tolerance: 0.04527670247103071 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.05513965079506988, tolerance: 0.04574617081780452 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.047695980345991984, tolerance: 0.04725777134932967 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.565e+00, tolerance: 5.657e-02 model = cd_fast.enet_coordinate_descent( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.025355479298866612, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.025415058969514348, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.024719548793427748, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02428357638868306, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023827574797280704, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02339974115449195, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022993218867469523, tolerance: 0.0182779953277781 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023654342946059614, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02359402124324106, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.023133791117572855, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.022653344865631198, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02218325782146735, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.021727384801550897, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.021287168980137494, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.02086352702519889, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020457048296407265, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.020068059479996236, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019696672034996254, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.019342821801330956, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.01900630281951976, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_coordinate_descent.py:681: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.01868679588076816, tolerance: 0.01861074896942037 model = cd_fast.enet_coordinate_descent_gram( 42%|████▏ | 23/55 [07:20<06:25, 12.05s/it]
Elapsed: 6.785216331481934 s RMSE for regression: 0.4348 Running with LassoLars
44%|████▎ | 24/55 [07:21<04:37, 8.94s/it]
Elapsed: 0.20097756385803223 s RMSE for regression: 50.4911 Elapsed: 0.004069805145263672 s RMSE for regression: 0.8700 Elapsed: 0.0033965110778808594 s Accuracy for classification: 0.3000 Elapsed: 0.003522157669067383 s Accuracy for classification: 0.3889 Elapsed: 0.09224557876586914 s Accuracy for classification: 0.8158 Elapsed: 0.014913558959960938 s Accuracy for classification: 0.0778 Running with LassoLarsCV Elapsed: 0.5652470588684082 s RMSE for regression: 51.6581
45%|████▌ | 25/55 [07:22<03:29, 6.98s/it]
Elapsed: 1.2313728332519531 s RMSE for regression: 0.4311 Running with LassoLarsIC Elapsed: 0.2026379108428955 s RMSE for regression: 50.8669
47%|████▋ | 26/55 [07:23<02:29, 5.17s/it]
Elapsed: 0.33669328689575195 s RMSE for regression: 0.4233 Running with LinearRegression Elapsed: 0.19397854804992676 s RMSE for regression: 50.0380 Elapsed: 0.25861597061157227 s RMSE for regression: 0.3969 Elapsed: 0.1840972900390625 s Accuracy for classification: 1.0000 Elapsed: 0.17545342445373535 s Accuracy for classification: 1.0000 Elapsed: 0.3274402618408203 s Accuracy for classification: 0.9649
49%|████▉ | 27/55 [07:28<02:22, 5.08s/it]
Elapsed: 3.6779396533966064 s Accuracy for classification: 0.9500 Running with LinearSVR Elapsed: 0.28504157066345215 s RMSE for regression: 49.1958
/usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( /usr/local/lib/python3.11/dist-packages/sklearn/svm/_base.py:1249: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. warnings.warn( 51%|█████ | 28/55 [07:33<02:16, 5.06s/it]
Elapsed: 4.671899795532227 s RMSE for regression: 0.3761 Running with MultiTaskElasticNet Running with MultiTaskElasticNetCV Running with MultiTaskLasso Running with MultiTaskLassoCV Running with NuSVR Elapsed: 1.2875077724456787 s RMSE for regression: 51.9660
64%|██████▎ | 35/55 [07:44<00:48, 2.44s/it]
Elapsed: 9.450008869171143 s RMSE for regression: 0.3469 Running with OrthogonalMatchingPursuit Elapsed: 0.16147136688232422 s RMSE for regression: 50.7979 Elapsed: 0.17341041564941406 s RMSE for regression: 0.4546 Elapsed: 0.1641554832458496 s Accuracy for classification: 0.9667 Elapsed: 0.20760297775268555 s Accuracy for classification: 1.0000 Elapsed: 0.330524206161499 s Accuracy for classification: 0.9825
65%|██████▌ | 36/55 [07:46<00:45, 2.39s/it]
Elapsed: 0.996509313583374 s Accuracy for classification: 0.9583 Running with OrthogonalMatchingPursuitCV Elapsed: 0.63850998878479 s RMSE for regression: 50.7995
67%|██████▋ | 37/55 [07:47<00:40, 2.23s/it]
Elapsed: 0.7047955989837646 s RMSE for regression: 0.4388 Running with PLSCanonical Running with PLSRegression Elapsed: 0.21582293510437012 s RMSE for regression: 49.8776 Elapsed: 0.24137067794799805 s RMSE for regression: 0.4261 Elapsed: 0.24464106559753418 s Accuracy for classification: 1.0000 Elapsed: 0.2733957767486572 s Accuracy for classification: 1.0000 Elapsed: 0.2548189163208008 s Accuracy for classification: 0.9737
71%|███████ | 39/55 [07:51<00:35, 2.22s/it]
Elapsed: 3.1161069869995117 s Accuracy for classification: 0.9306 Running with PassiveAggressiveRegressor Elapsed: 0.18162250518798828 s RMSE for regression: 49.0170
73%|███████▎ | 40/55 [07:52<00:28, 1.90s/it]
Elapsed: 0.2270033359527588 s RMSE for regression: 0.4127 Running with PoissonRegressor Running with QuantileRegressor Elapsed: 3.2531702518463135 s RMSE for regression: 72.8862
76%|███████▋ | 42/55 [08:01<00:37, 2.86s/it]
Elapsed: 6.122649192810059 s RMSE for regression: 0.8528 Running with RANSACRegressor Elapsed: 12.880609035491943 s RMSE for regression: 58.8836 Elapsed: 12.161862134933472 s RMSE for regression: 0.4726
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning)
Elapsed: 11.872267007827759 s Accuracy for classification: 0.5000 Elapsed: 13.281305074691772 s Accuracy for classification: 0.3889 Elapsed: 15.801233768463135 s Accuracy for classification: 0.8421
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_regression.py:1266: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples. warnings.warn(msg, UndefinedMetricWarning) 78%|███████▊ | 43/55 [12:36<11:15, 56.26s/it]
Elapsed: 208.6714358329773 s Accuracy for classification: 0.5306 Running with RadiusNeighborsRegressor
/usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) /usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_regression.py:508: UserWarning: One or more samples have no neighbors within specified radius; predicting NaN. warnings.warn(empty_warning_msg) 80%|████████ | 44/55 [12:37<08:05, 44.13s/it]
Elapsed: 0.9109394550323486 s Running with Ridge Elapsed: 0.17456555366516113 s RMSE for regression: 50.1804 Elapsed: 0.19010615348815918 s RMSE for regression: 0.3978 Elapsed: 0.1613008975982666 s Accuracy for classification: 1.0000 Elapsed: 0.18721652030944824 s Accuracy for classification: 1.0000 Elapsed: 0.3114893436431885 s Accuracy for classification: 0.9649
85%|████████▌ | 47/55 [12:39<03:04, 23.03s/it]
Elapsed: 0.601301908493042 s Accuracy for classification: 0.9500 Running with RidgeCV Elapsed: 0.2643613815307617 s RMSE for regression: 50.1530 Elapsed: 0.42165279388427734 s RMSE for regression: 0.4030 Elapsed: 0.24331355094909668 s Accuracy for classification: 1.0000 Elapsed: 0.25229525566101074 s Accuracy for classification: 1.0000 Elapsed: 2.254711627960205 s Accuracy for classification: 0.9649
87%|████████▋ | 48/55 [12:48<02:23, 20.50s/it]
Elapsed: 5.993970155715942 s Accuracy for classification: 0.9500 Running with SGDRegressor Elapsed: 0.21875286102294922 s RMSE for regression: 49.7408
89%|████████▉ | 49/55 [12:49<01:37, 16.28s/it]
Elapsed: 0.2683231830596924 s RMSE for regression: 0.4215 Running with SVR Elapsed: 1.8788957595825195 s RMSE for regression: 49.4323
91%|█████████ | 50/55 [12:59<01:14, 15.00s/it]
Elapsed: 8.855087757110596 s RMSE for regression: 0.3460 Running with TheilSenRegressor Elapsed: 153.34134554862976 s RMSE for regression: 49.0028
95%|█████████▍| 52/55 [17:56<03:24, 68.07s/it]
Elapsed: 143.07517862319946 s RMSE for regression: 0.3840 Running with TweedieRegressor Elapsed: 0.6265287399291992 s RMSE for regression: 50.5897
100%|██████████| 55/55 [17:57<00:00, 19.59s/it]
Elapsed: 0.4339334964752197 s RMSE for regression: 0.4447
df_results_regressors = pd.DataFrame(results_regressors, columns=['Dataset', 'Model', 'RMSE'])
df_results_regressors.sort_values(by='RMSE', ascending=True, inplace=True)
df_results_classifiers = pd.DataFrame(results_classifiers, columns=['Dataset', 'Model', 'Accuracy'])
df_results_classifiers.sort_values(by='Accuracy', ascending=False, inplace=True)
df_results_regressors_diabetes = df_results_regressors[df_results_regressors['Dataset'] == 'diabetes']
df_results_regressors_housing = df_results_regressors[df_results_regressors['Dataset'] == 'housing']
df_results_classifiers_iris = df_results_classifiers[df_results_classifiers['Dataset'] == 'iris']
df_results_classifiers_wine = df_results_classifiers[df_results_classifiers['Dataset'] == 'wine']
df_results_classifiers_breast_cancer = df_results_classifiers[df_results_classifiers['Dataset'] == 'breast_cancer']
df_results_classifiers_digits = df_results_classifiers[df_results_classifiers['Dataset'] == 'digits']
print("Best regressors:")
display(df_results_regressors_diabetes)
display(df_results_regressors_housing)
print("\nBest classifiers:")
display(df_results_classifiers_iris)
display(df_results_classifiers_wine)
display(df_results_classifiers_breast_cancer)
display(df_results_classifiers_digits)
Best regressors:
Dataset | Model | RMSE | |
---|---|---|---|
66 | diabetes | TheilSenRegressor | 49.002812 |
52 | diabetes | PassiveAggressiveRegressor | 49.017006 |
42 | diabetes | LinearSVR | 49.195826 |
64 | diabetes | SVR | 49.432314 |
62 | diabetes | SGDRegressor | 49.740770 |
50 | diabetes | PLSRegression | 49.877624 |
40 | diabetes | LinearRegression | 50.038024 |
24 | diabetes | KernelRidge | 50.137963 |
60 | diabetes | RidgeCV | 50.153038 |
58 | diabetes | Ridge | 50.180423 |
20 | diabetes | HuberRegressor | 50.354598 |
30 | diabetes | Lasso | 50.490869 |
34 | diabetes | LassoLars | 50.491092 |
68 | diabetes | TweedieRegressor | 50.589740 |
6 | diabetes | BayesianRidge | 50.759803 |
0 | diabetes | ARDRegression | 50.765231 |
12 | diabetes | ElasticNet | 50.773545 |
46 | diabetes | OrthogonalMatchingPursuit | 50.797879 |
48 | diabetes | OrthogonalMatchingPursuitCV | 50.799486 |
38 | diabetes | LassoLarsIC | 50.866918 |
14 | diabetes | ElasticNetCV | 51.243455 |
32 | diabetes | LassoCV | 51.333102 |
36 | diabetes | LassoLarsCV | 51.658117 |
44 | diabetes | NuSVR | 51.965976 |
2 | diabetes | AdaBoostRegressor | 52.912706 |
28 | diabetes | LarsCV | 52.936573 |
4 | diabetes | BaggingRegressor | 54.699888 |
16 | diabetes | ExtraTreeRegressor | 55.071533 |
56 | diabetes | RANSACRegressor | 58.883571 |
8 | diabetes | DecisionTreeRegressor | 61.064470 |
18 | diabetes | GaussianProcessRegressor | 66.618258 |
54 | diabetes | QuantileRegressor | 72.886227 |
10 | diabetes | DummyRegressor | 73.222493 |
22 | diabetes | KNeighborsRegressor | 219.818565 |
26 | diabetes | Lars | 249.197131 |
Dataset | Model | RMSE | |
---|---|---|---|
3 | housing | AdaBoostRegressor | 0.328082 |
65 | housing | SVR | 0.345998 |
17 | housing | ExtraTreeRegressor | 0.346823 |
45 | housing | NuSVR | 0.346886 |
5 | housing | BaggingRegressor | 0.348871 |
21 | housing | HuberRegressor | 0.373068 |
43 | housing | LinearSVR | 0.376118 |
67 | housing | TheilSenRegressor | 0.384006 |
9 | housing | DecisionTreeRegressor | 0.384891 |
41 | housing | LinearRegression | 0.396910 |
59 | housing | Ridge | 0.397799 |
61 | housing | RidgeCV | 0.402997 |
53 | housing | PassiveAggressiveRegressor | 0.412686 |
63 | housing | SGDRegressor | 0.421484 |
1 | housing | ARDRegression | 0.423014 |
39 | housing | LassoLarsIC | 0.423339 |
25 | housing | KernelRidge | 0.423757 |
51 | housing | PLSRegression | 0.426112 |
37 | housing | LassoLarsCV | 0.431140 |
7 | housing | BayesianRidge | 0.432840 |
15 | housing | ElasticNetCV | 0.434310 |
33 | housing | LassoCV | 0.434807 |
49 | housing | OrthogonalMatchingPursuitCV | 0.438809 |
69 | housing | TweedieRegressor | 0.444735 |
47 | housing | OrthogonalMatchingPursuit | 0.454569 |
29 | housing | LarsCV | 0.464425 |
57 | housing | RANSACRegressor | 0.472617 |
19 | housing | GaussianProcessRegressor | 0.501228 |
27 | housing | Lars | 0.548208 |
13 | housing | ElasticNet | 0.732468 |
55 | housing | QuantileRegressor | 0.852777 |
35 | housing | LassoLars | 0.869965 |
11 | housing | DummyRegressor | 0.869965 |
31 | housing | Lasso | 0.869965 |
23 | housing | KNeighborsRegressor | 1.000700 |
Best classifiers:
Dataset | Model | Accuracy | |
---|---|---|---|
0 | iris | BaggingRegressor | 1.000000 |
24 | iris | KNeighborsRegressor | 1.000000 |
4 | iris | DecisionTreeRegressor | 1.000000 |
52 | iris | PLSRegression | 1.000000 |
20 | iris | GaussianProcessRegressor | 1.000000 |
44 | iris | LinearRegression | 1.000000 |
64 | iris | RidgeCV | 1.000000 |
60 | iris | Ridge | 1.000000 |
48 | iris | OrthogonalMatchingPursuit | 0.966667 |
28 | iris | KernelRidge | 0.933333 |
16 | iris | ExtraTreeRegressor | 0.933333 |
56 | iris | RANSACRegressor | 0.500000 |
12 | iris | ElasticNet | 0.300000 |
8 | iris | DummyRegressor | 0.300000 |
40 | iris | LassoLars | 0.300000 |
36 | iris | Lasso | 0.300000 |
32 | iris | Lars | 0.266667 |
Dataset | Model | Accuracy | |
---|---|---|---|
17 | wine | ExtraTreeRegressor | 1.000000 |
53 | wine | PLSRegression | 1.000000 |
61 | wine | Ridge | 1.000000 |
29 | wine | KernelRidge | 1.000000 |
49 | wine | OrthogonalMatchingPursuit | 1.000000 |
65 | wine | RidgeCV | 1.000000 |
45 | wine | LinearRegression | 1.000000 |
1 | wine | BaggingRegressor | 0.972222 |
25 | wine | KNeighborsRegressor | 0.972222 |
5 | wine | DecisionTreeRegressor | 0.944444 |
21 | wine | GaussianProcessRegressor | 0.833333 |
33 | wine | Lars | 0.777778 |
13 | wine | ElasticNet | 0.500000 |
37 | wine | Lasso | 0.388889 |
41 | wine | LassoLars | 0.388889 |
57 | wine | RANSACRegressor | 0.388889 |
9 | wine | DummyRegressor | 0.388889 |
Dataset | Model | Accuracy | |
---|---|---|---|
50 | breast_cancer | OrthogonalMatchingPursuit | 0.982456 |
54 | breast_cancer | PLSRegression | 0.973684 |
30 | breast_cancer | KernelRidge | 0.964912 |
66 | breast_cancer | RidgeCV | 0.964912 |
46 | breast_cancer | LinearRegression | 0.964912 |
62 | breast_cancer | Ridge | 0.964912 |
18 | breast_cancer | ExtraTreeRegressor | 0.964912 |
2 | breast_cancer | BaggingRegressor | 0.956140 |
6 | breast_cancer | DecisionTreeRegressor | 0.938596 |
26 | breast_cancer | KNeighborsRegressor | 0.885965 |
58 | breast_cancer | RANSACRegressor | 0.842105 |
14 | breast_cancer | ElasticNet | 0.824561 |
38 | breast_cancer | Lasso | 0.815789 |
42 | breast_cancer | LassoLars | 0.815789 |
22 | breast_cancer | GaussianProcessRegressor | 0.631579 |
10 | breast_cancer | DummyRegressor | 0.622807 |
34 | breast_cancer | Lars | 0.526316 |
Dataset | Model | Accuracy | |
---|---|---|---|
19 | digits | ExtraTreeRegressor | 0.975000 |
3 | digits | BaggingRegressor | 0.966667 |
51 | digits | OrthogonalMatchingPursuit | 0.958333 |
27 | digits | KNeighborsRegressor | 0.958333 |
31 | digits | KernelRidge | 0.952778 |
47 | digits | LinearRegression | 0.950000 |
63 | digits | Ridge | 0.950000 |
67 | digits | RidgeCV | 0.950000 |
55 | digits | PLSRegression | 0.930556 |
7 | digits | DecisionTreeRegressor | 0.858333 |
59 | digits | RANSACRegressor | 0.530556 |
35 | digits | Lars | 0.300000 |
23 | digits | GaussianProcessRegressor | 0.227778 |
11 | digits | DummyRegressor | 0.077778 |
15 | digits | ElasticNet | 0.077778 |
39 | digits | Lasso | 0.077778 |
43 | digits | LassoLars | 0.077778 |
3 - Time series forecasting using nnetsauce.MTS
¶
!pip install nnetsauce
import nnetsauce as ns
import pandas as pd
from sklearn.utils import all_estimators
from tqdm import tqdm
from sklearn.utils.multiclass import type_of_target
from sklearn.datasets import fetch_california_housing
# Get all scikit-learn regressors
estimators = all_estimators(type_filter='regressor')
results_regressors = []
results_classifiers = []
verbose = 0
url = "https://raw.githubusercontent.com/Techtonique/"
url += "datasets/main/time_series/multivariate/"
url += "ice_cream_vs_heater.csv"
df_temp = pd.read_csv(url)
df_temp.index = pd.DatetimeIndex(df_temp.date)
# must have# first other difference
df_icecream = df_temp.drop(columns=['date']).diff().dropna()
for name, RegressorClass in tqdm(estimators):
if name in ['AdaBoostRegressor', 'MultiOutputRegressor', 'MultiOutputClassifier', 'StackingRegressor', 'StackingClassifier',
'VotingRegressor', 'VotingClassifier', 'TransformedTargetRegressor', 'RegressorChain',
'GradientBoostingRegressor', 'HistGradientBoostingRegressor', 'RandomForestRegressor',
'ExtraTreesRegressor', 'MLPRegressor', 'TheilSenRegressor']:
continue
try:
print(f"\nRunning with {name}")
# Regression Examples
mdl = BoosterRegressor(obj=RegressorClass(), n_estimators=100, learning_rate=0.1,
n_hidden_features=10, verbose=verbose, seed=42)
regr = ns.MTS(obj=mdl,
type_pi="scp2-kde",
replications=250,
lags=20,
show_progress=False)
regr.fit(df_icecream)
regr.predict(h=30)
regr.plot("heater", type_plot="pi")
except Exception as e:
print(e)
continue
0%| | 0/55 [00:00<?, ?it/s]
Running with ARDRegression
2%|▏ | 1/55 [00:37<34:11, 37.98s/it]
Running with BaggingRegressor
5%|▌ | 3/55 [01:16<20:55, 24.15s/it]
Running with BayesianRidge
7%|▋ | 4/55 [01:21<14:54, 17.55s/it]
Running with CCA `n_components` upper bound is 1. Got 2 instead. Reduce `n_components`. Running with DecisionTreeRegressor
11%|█ | 6/55 [01:26<08:14, 10.09s/it]
Running with DummyRegressor
13%|█▎ | 7/55 [01:28<06:13, 7.79s/it]
Running with ElasticNet
15%|█▍ | 8/55 [01:30<05:01, 6.43s/it]
Running with ElasticNetCV
16%|█▋ | 9/55 [02:29<16:07, 21.04s/it]
Running with ExtraTreeRegressor
18%|█▊ | 10/55 [02:33<12:12, 16.27s/it]
Running with GammaRegressor Some value(s) of y are out of the valid range of the loss 'HalfGammaLoss'. Running with GaussianProcessRegressor
24%|██▎ | 13/55 [02:39<05:52, 8.40s/it]
Running with HuberRegressor
29%|██▉ | 16/55 [03:01<05:08, 7.91s/it]
Running with IsotonicRegression Isotonic regression input X should be a 1d array or 2d array with 1 feature Running with KNeighborsRegressor
33%|███▎ | 18/55 [03:06<03:55, 6.37s/it]
Running with KernelRidge
35%|███▍ | 19/55 [03:15<04:01, 6.70s/it]
Running with Lars
36%|███▋ | 20/55 [03:16<03:15, 5.57s/it]
Input y contains NaN. Running with LarsCV
38%|███▊ | 21/55 [03:25<03:38, 6.41s/it]
Running with Lasso
40%|████ | 22/55 [03:28<03:00, 5.46s/it]
Running with LassoCV
42%|████▏ | 23/55 [04:36<11:27, 21.47s/it]
Running with LassoLars
44%|████▎ | 24/55 [04:38<08:29, 16.44s/it]
Running with LassoLarsCV
45%|████▌ | 25/55 [04:47<07:08, 14.30s/it]
Running with LassoLarsIC
47%|████▋ | 26/55 [04:52<05:37, 11.66s/it]
Running with LinearRegression
49%|████▉ | 27/55 [04:57<04:31, 9.69s/it]
Running with LinearSVR
62%|██████▏ | 34/55 [05:04<00:53, 2.55s/it]
Running with MultiTaskElasticNet For mono-task outputs, use ElasticNet Running with MultiTaskElasticNetCV For mono-task outputs, use ElasticNetCVCV Running with MultiTaskLasso For mono-task outputs, use ElasticNet Running with MultiTaskLassoCV For mono-task outputs, use LassoCVCV Running with NuSVR
Running with OrthogonalMatchingPursuit
65%|██████▌ | 36/55 [05:12<00:56, 2.97s/it]
Running with OrthogonalMatchingPursuitCV
67%|██████▋ | 37/55 [05:17<00:59, 3.31s/it]
Running with PLSCanonical `n_components` upper bound is 1. Got 2 instead. Reduce `n_components`. Running with PLSRegression
71%|███████ | 39/55 [05:23<00:49, 3.08s/it]
Running with PassiveAggressiveRegressor
73%|███████▎ | 40/55 [05:26<00:46, 3.10s/it]
Running with PoissonRegressor Some value(s) of y are out of the valid range of the loss 'HalfPoissonLoss'. Running with QuantileRegressor
76%|███████▋ | 42/55 [05:34<00:45, 3.46s/it]
Running with RANSACRegressor
78%|███████▊ | 43/55 [07:41<05:28, 27.39s/it]
Running with RadiusNeighborsRegressor
80%|████████ | 44/55 [07:44<04:04, 22.19s/it]
All the 750 fits failed. It is very likely that your model is misconfigured. You can try to debug the error by setting error_score='raise'. Below are more details about the failures: -------------------------------------------------------------------------------- 750 fits failed with the following error: Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/sklearn/model_selection/_validation.py", line 864, in _fit_and_score estimator.fit(X_train, **fit_params) File "/usr/local/lib/python3.11/dist-packages/sklearn/base.py", line 1389, in wrapper return fit_method(estimator, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/sklearn/neighbors/_kde.py", line 229, in fit X = validate_data(self, X, order="C", dtype=np.float64) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 2944, in validate_data out = check_array(X, input_name="X", **check_params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 1107, in check_array _assert_all_finite( File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 120, in _assert_all_finite _assert_all_finite_element_wise( File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py", line 169, in _assert_all_finite_element_wise raise ValueError(msg_err) ValueError: Input X contains NaN. KernelDensity does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values Running with Ridge
85%|████████▌ | 47/55 [07:47<01:36, 12.02s/it]
Running with RidgeCV
87%|████████▋ | 48/55 [07:52<01:14, 10.61s/it]
Running with SGDRegressor
89%|████████▉ | 49/55 [07:55<00:54, 9.11s/it]
Running with SVR
91%|█████████ | 50/55 [08:00<00:40, 8.17s/it]
Running with TweedieRegressor
100%|██████████| 55/55 [08:06<00:00, 8.84s/it]
Comments powered by Talkyard.