The model presented here is a frequentist – conformalized – version of the Bayesian one presented in #152. It is implemented in learningmachine, both in Python and R, and is updated as new observations arrive, using Polyak averaging. Model explanations are given as sensitivity analyses.

1 - R version

%load_ext rpy2.ipython
%%R

utils::install.packages("bayesianrvfl", repos = c("https://techtonique.r-universe.dev", "https://cloud.r-project.org"))
utils::install.packages("learningmachine", repos = c("https://techtonique.r-universe.dev", "https://cloud.r-project.org"))
%%R

library(learningmachine)

X <- as.matrix(mtcars[,-1])
y <- mtcars$mpg

set.seed(123)
(index_train <- base::sample.int(n = nrow(X),
                                 size = floor(0.6*nrow(X)),
                                 replace = FALSE))
##  [1] 31 15 19 14  3 10 18 22 11  5 20 29 23 30  9 28  8 27  7
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
dim(X_train)
## [1] 19 10
dim(X_test)
[1] 13 10
%%R

obj <- learningmachine::Regressor$new(method = "bayesianrvfl",
                                      nb_hidden = 5L)
obj$get_type()
[1] "regression"
%%R

obj_GCV <- bayesianrvfl::fit_rvfl(x = X_train, y = y_train)
(best_lambda <- obj_GCV$lambda[which.min(obj_GCV$GCV)])
[1] 12.9155
%%R

t0 <- proc.time()[3]
obj$fit(X_train, y_train, reg_lambda = best_lambda)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")
Elapsed:  0.01 s 
%%R

previous_coefs <- drop(obj$model$coef)

newx <- X_test[1, ]
newy <- y_test[1]

new_X_test <- X_test[-1, ]
new_y_test <- y_test[-1]

t0 <- proc.time()[3]
obj$update(newx, newy, method = "polyak", alpha = 0.6)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")

print(summary(previous_coefs))

print(summary(drop(obj$model$coef) - previous_coefs))


plot(drop(obj$model$coef) - previous_coefs, type='l')
abline(h = 0, lty=2, col="red")

Elapsed:  0.003 s 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.96778 -0.51401 -0.16335 -0.05234  0.31900  0.98482 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-0.065436 -0.002152  0.027994  0.015974  0.040033  0.058892 

xxx

%%R

print(obj$summary(new_X_test, y=new_y_test, show_progress=FALSE))
$R_squared
[1] 0.6692541

$R_squared_adj
[1] -2.638205

$Residuals
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-4.5014 -2.2111 -0.5532 -0.3928  1.3495  3.9206 

$Coverage_rate
[1] 100

$citests
         estimate        lower        upper      p-value signif
cyl   -41.4815528  -43.6039915  -39.3591140 1.306085e-13    ***
disp   -0.5937584   -0.7014857   -0.4860311 1.040246e-07    ***
hp     -1.0226867   -1.2175471   -0.8278263 1.719172e-07    ***
drat   84.5859637   73.2987057   95.8732217 4.178658e-09    ***
wt   -169.1047879 -189.5595154 -148.6500603 1.469605e-09    ***
qsec   22.3026258   15.1341951   29.4710566 2.772362e-05    ***
vs    113.3209911   88.3101728  138.3318093 7.599984e-07    ***
am    175.1639102  139.5755741  210.7522464 3.304560e-07    ***
gear   44.3270639   36.1456398   52.5084881 1.240722e-07    ***
carb  -59.6511203  -69.8576126  -49.4446280 5.677270e-08    ***

$effects
── Data Summary ────────────────────────
                           Values 
Name                       effects
Number of rows             12     
Number of columns          10     
_______________________           
Column type frequency:            
  numeric                  10     
________________________          
Group variables            None   

── Variable type: numeric ──────────────────────────────────────────────────────
   skim_variable     mean     sd       p0      p25      p50      p75     p100
 1 cyl            -41.5    3.34   -43.4    -43.4    -43.3    -41.7    -34.5  
 2 disp            -0.594  0.170   -0.916   -0.635   -0.505   -0.505   -0.356
 3 hp              -1.02   0.307   -1.44    -1.40    -0.877   -0.768   -0.768
 4 drat            84.6   17.8     59.5     76.7     89.5     89.5    128.   
 5 wt            -169.    32.2   -204.    -199.    -166.    -138.    -138.   
 6 qsec            22.3   11.3     13.3     13.3     17.4     29.2     40.1  
 7 vs             113.    39.4     59.6     94.4     94.4    117.     191.   
 8 am             175.    56.0    124.     124.     153.     226.     245.   
 9 gear            44.3   12.9     26.3     38.7     47.9     47.9     76.0  
10 carb           -59.7   16.1    -77.3    -74.6    -58.2    -44.4    -44.4  
   hist 
 1 ▇▁▁▁▂
 2 ▂▁▃▇▁
 3 ▅▁▁▂▇
 4 ▂▃▇▁▁
 5 ▇▁▁▁▇
 6 ▇▂▁▁▃
 7 ▁▇▃▁▂
 8 ▇▁▁▂▃
 9 ▂▃▇▁▁
10 ▇▁▁▁▇
%%R

res <- obj$predict(X = new_X_test)

new_y_train <- c(y_train, newy)

plot(c(new_y_train, res$preds), type='l',
    main="",
    ylab="",
    ylim = c(min(c(res$upper, res$lower, y)),
             max(c(res$upper, res$lower, y))))
lines(c(new_y_train, res$upper), col="gray60")
lines(c(new_y_train, res$lower), col="gray60")
lines(c(new_y_train, res$preds), col = "red")
lines(c(new_y_train, new_y_test), col = "blue")
abline(v = length(y_train), lty=2, col="black")

xxx

%%R

newx <- X_test[2, ]
newy <- y_test[2]

new_X_test <- X_test[-c(1, 2), ]
new_y_test <- y_test[-c(1, 2)]

t0 <- proc.time()[3]
obj$update(newx, newy, method = "polyak", alpha = 0.9)
cat("Elapsed: ", proc.time()[3] - t0, "s \n")

print(obj$summary(new_X_test, y=new_y_test, show_progress=FALSE))


res <- obj$predict(X = new_X_test)

new_y_train <- c(y_train, y_test[c(1, 2)])

plot(c(new_y_train, res$preds), type='l',
    main="",
    ylab="",
    ylim = c(min(c(res$upper, res$lower, y)),
             max(c(res$upper, res$lower, y))))
lines(c(new_y_train, res$upper), col="gray60")
lines(c(new_y_train, res$lower), col="gray60")
lines(c(new_y_train, res$preds), col = "red")
lines(c(new_y_train, new_y_test), col = "blue")
abline(v = length(y_train), lty=2, col="black")
Elapsed:  0.003 s 
$R_squared
[1] 0.6426871

$R_squared_adj
[1] -Inf

$Residuals
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-4.5686 -2.4084 -1.0397 -0.3897  1.5507  4.0215 

$Coverage_rate
[1] 100

$citests
         estimate        lower        upper      p-value signif
cyl   -42.1261096  -44.5327541  -39.7194651 2.932516e-12    ***
disp   -0.6256505   -0.7347381   -0.5165629 1.613495e-07    ***
hp     -1.0139634   -1.2198651   -0.8080617 6.747693e-07    ***
drat   82.8645391   74.8033348   90.9257434 5.680663e-10    ***
wt   -170.7891742 -193.1932631 -148.3850853 1.053193e-08    ***
qsec   22.2365552   13.9564091   30.5167012 1.350094e-04    ***
vs    119.1784891   94.0163626  144.3406157 9.681321e-07    ***
am    174.2138307  134.1390652  214.2885963 2.127371e-06    ***
gear   42.7943293   36.9622907   48.6263678 1.523695e-08    ***
carb  -59.4034661  -70.5135723  -48.2933599 3.127231e-07    ***

$effects
── Data Summary ────────────────────────
                           Values 
Name                       effects
Number of rows             11     
Number of columns          10     
_______________________           
Column type frequency:            
  numeric                  10     
________________________          
Group variables            None   

── Variable type: numeric ──────────────────────────────────────────────────────
   skim_variable     mean     sd       p0      p25      p50      p75     p100
 1 cyl            -42.1    3.58   -44.1    -44.1    -44.1    -43.0    -34.9  
 2 disp            -0.626  0.162   -0.933   -0.643   -0.514   -0.514   -0.514
 3 hp              -1.01   0.306   -1.47    -1.24    -0.787   -0.787   -0.787
 4 drat            82.9   12.0     61.2     79.6     91.7     91.7     91.7  
 5 wt            -171.    33.3   -210.    -204.    -142.    -142.    -142.   
 6 qsec            22.2   12.3     13.2     13.2     13.2     30.7     41.2  
 7 vs             119.    37.5     96.0     96.0     96.0    117.     193.   
 8 am             174.    59.7    123.     123.     123.     233.     247.   
 9 gear            42.8    8.68    27.1     40.4     49.2     49.2     49.2  
10 carb           -59.4   16.5    -78.8    -76.0    -45.1    -45.1    -45.1  
   hist 
 1 ▇▁▁▁▂
 2 ▂▁▁▃▇
 3 ▃▁▁▂▇
 4 ▂▁▁▃▇
 5 ▇▁▁▁▇
 6 ▇▂▁▁▃
 7 ▇▃▁▁▂
 8 ▇▁▁▂▃
 9 ▂▁▁▃▇
10 ▇▁▁▁▇

xxx

2 - Python version

!pip install git+https://github.com/Techtonique/learningmachine_python.git --verbose

import pandas as pd
import numpy as np
import warnings
import learningmachine as lm


# Load the mtcars dataset
data = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/mtcars.csv")
X = data.drop("mpg", axis=1).values
X = pd.DataFrame(X).iloc[:,1:]
X = X.astype(np.float16)
X.columns = ["cyl","disp","hp","drat","wt","qsec","vs","am","gear","carb"]
y = data["mpg"].values
display(X.describe())
display(X.head())
display(X.dtypes)
cyl disp hp drat wt qsec vs am gear carb
count 32.000000 32.000000 32.0000 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000
mean 6.187500 230.750000 146.7500 3.595703 3.216797 17.843750 0.437500 0.406250 3.687500 2.812500
std 1.786133 123.937500 68.5625 0.534668 0.978516 1.788086 0.503906 0.499023 0.737793 1.615234
min 4.000000 71.125000 52.0000 2.759766 1.512695 14.500000 0.000000 0.000000 3.000000 1.000000
25% 4.000000 120.828125 96.5000 3.080078 2.580566 16.898438 0.000000 0.000000 3.000000 2.000000
50% 6.000000 196.312500 123.0000 3.694336 3.325195 17.703125 0.000000 0.000000 4.000000 2.000000
75% 8.000000 326.000000 180.0000 3.919922 3.610352 18.906250 1.000000 1.000000 4.000000 4.000000
max 8.000000 472.000000 335.0000 4.929688 5.425781 22.906250 1.000000 1.000000 5.000000 8.000000
cyl disp hp drat wt qsec vs am gear carb
0 6.0 160.0 110.0 3.900391 2.619141 16.453125 0.0 1.0 4.0 4.0
1 6.0 160.0 110.0 3.900391 2.875000 17.015625 0.0 1.0 4.0 4.0
2 4.0 108.0 93.0 3.849609 2.320312 18.609375 1.0 1.0 4.0 1.0
3 6.0 258.0 110.0 3.080078 3.214844 19.437500 1.0 0.0 3.0 1.0
4 8.0 360.0 175.0 3.150391 3.439453 17.015625 0.0 0.0 3.0 2.0
0
cyl float16
disp float16
hp float16
drat float16
wt float16
qsec float16
vs float16
am float16
gear float16
carb float16


y.dtype
dtype('float64')
X
cyl disp hp drat wt qsec vs am gear carb
0 6.0 160.0000 110.0 3.900391 2.619141 16.453125 0.0 1.0 4.0 4.0
1 6.0 160.0000 110.0 3.900391 2.875000 17.015625 0.0 1.0 4.0 4.0
2 4.0 108.0000 93.0 3.849609 2.320312 18.609375 1.0 1.0 4.0 1.0
3 6.0 258.0000 110.0 3.080078 3.214844 19.437500 1.0 0.0 3.0 1.0
4 8.0 360.0000 175.0 3.150391 3.439453 17.015625 0.0 0.0 3.0 2.0
5 6.0 225.0000 105.0 2.759766 3.460938 20.218750 1.0 0.0 3.0 1.0
6 8.0 360.0000 245.0 3.210938 3.570312 15.843750 0.0 0.0 3.0 4.0
7 4.0 146.7500 62.0 3.689453 3.189453 20.000000 1.0 0.0 4.0 2.0
8 4.0 140.7500 95.0 3.919922 3.150391 22.906250 1.0 0.0 4.0 2.0
9 6.0 167.6250 123.0 3.919922 3.439453 18.296875 1.0 0.0 4.0 4.0
10 6.0 167.6250 123.0 3.919922 3.439453 18.906250 1.0 0.0 4.0 4.0
11 8.0 275.7500 180.0 3.070312 4.070312 17.406250 0.0 0.0 3.0 3.0
12 8.0 275.7500 180.0 3.070312 3.730469 17.593750 0.0 0.0 3.0 3.0
13 8.0 275.7500 180.0 3.070312 3.779297 18.000000 0.0 0.0 3.0 3.0
14 8.0 472.0000 205.0 2.929688 5.250000 17.984375 0.0 0.0 3.0 4.0
15 8.0 460.0000 215.0 3.000000 5.425781 17.812500 0.0 0.0 3.0 4.0
16 8.0 440.0000 230.0 3.230469 5.343750 17.421875 0.0 0.0 3.0 4.0
17 4.0 78.6875 66.0 4.078125 2.199219 19.468750 1.0 1.0 4.0 1.0
18 4.0 75.6875 52.0 4.929688 1.615234 18.515625 1.0 1.0 4.0 2.0
19 4.0 71.1250 65.0 4.218750 1.834961 19.906250 1.0 1.0 4.0 1.0
20 4.0 120.1250 97.0 3.699219 2.464844 20.015625 1.0 0.0 3.0 1.0
21 8.0 318.0000 150.0 2.759766 3.519531 16.875000 0.0 0.0 3.0 2.0
22 8.0 304.0000 150.0 3.150391 3.435547 17.296875 0.0 0.0 3.0 2.0
23 8.0 350.0000 245.0 3.730469 3.839844 15.406250 0.0 0.0 3.0 4.0
24 8.0 400.0000 175.0 3.080078 3.845703 17.046875 0.0 0.0 3.0 2.0
25 4.0 79.0000 66.0 4.078125 1.934570 18.906250 1.0 1.0 4.0 1.0
26 4.0 120.3125 91.0 4.429688 2.140625 16.703125 0.0 1.0 5.0 2.0
27 4.0 95.1250 113.0 3.769531 1.512695 16.906250 1.0 1.0 5.0 2.0
28 8.0 351.0000 264.0 4.218750 3.169922 14.500000 0.0 1.0 5.0 4.0
29 6.0 145.0000 175.0 3.619141 2.769531 15.500000 0.0 1.0 5.0 6.0
30 8.0 301.0000 335.0 3.539062 3.570312 14.601562 0.0 1.0 5.0 8.0
31 4.0 121.0000 109.0 4.109375 2.779297 18.593750 1.0 1.0 4.0 2.0
# Split the data into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)

# Create a Bayesian RVFL regressor object
obj = lm.Regressor(method = "bayesianrvfl", nb_hidden = 5)

# Fit the model using the training data
obj.fit(X_train, y_train, reg_lambda=12.9155)

# Print the summary of the model
print(obj.summary(X_test, y=y_test, show_progress=False))
$R_squared
[1] 0.6416309

$R_squared_adj
[1] 1.537554

$Residuals
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-4.0724 -2.0122 -0.1018 -0.1941  1.4361  3.9676 

$Coverage_rate
[1] 100

$citests
         estimate       lower        upper      p-value signif
cyl   -24.5943583  -40.407994   -8.7807230 8.909365e-03     **
disp   -0.2419797   -0.370835   -0.1131245 3.711077e-03     **
hp     -1.5734483   -1.722903   -1.4239939 2.255640e-07    ***
drat  142.5646192  124.575179  160.5540599 1.217808e-06    ***
wt   -144.8871352 -158.911143 -130.8631275 2.523441e-07    ***
qsec   46.8290859   27.829411   65.8287611 9.388045e-04    ***
vs     75.0555146   30.645127  119.4659017 6.110043e-03     **
am    207.5935234  133.205572  281.9814744 4.843095e-04    ***
gear   73.6892658   60.186232   87.1922995 1.091470e-05    ***
carb  -71.2974988  -79.480400  -63.1145974 6.944475e-07    ***

$effects
── Data Summary ────────────────────────
                           Values 
Name                       effects
Number of rows             7      
Number of columns          10     
_______________________           
Column type frequency:            
  numeric                  10     
________________________          
Group variables            None   

── Variable type: numeric ──────────────────────────────────────────────────────
   skim_variable     mean     sd       p0      p25      p50      p75       p100
 1 cyl            -24.6   17.1    -38.5    -38.5    -33.4    -12.4      1.66   
 2 disp            -0.242  0.139   -0.351   -0.351   -0.285   -0.181    0.00546
 3 hp              -1.57   0.162   -1.90    -1.61    -1.48    -1.47    -1.47   
 4 drat           143.    19.5    125.     125.     141.     154.     174.     
 5 wt            -145.    15.2   -167.    -152.    -142.    -142.    -117.     
 6 qsec            46.8   20.5     14.1     35.3     55.7     62.4     62.4    
 7 vs              75.1   48.0     37.2     37.2     58.7     93.9    167.     
 8 am             208.    80.4     64.3    168.     250.     267.     267.     
 9 gear            73.7   14.6     60.6     60.6     72.7     82.1     96.9    
10 carb           -71.3    8.85   -84.4    -75.2    -69.7    -69.7    -55.2    
   hist 
 1 ▇▁▂▁▃
 2 ▇▂▁▂▂
 3 ▂▁▁▃▇
 4 ▇▂▂▂▂
 5 ▂▅▇▁▂
 6 ▃▁▁▂▇
 7 ▇▁▃▁▂
 8 ▂▂▁▂▇
 9 ▇▂▂▂▂
10 ▂▅▇▁▂
# Select the first test sample
newx = X_test.iloc[0,:]
newy = y_test[0]

# Update the model with the new sample
new_X_test = X_test[1:]
new_y_test = y_test[1:]
obj.update(newx, newy, method="polyak", alpha=0.9)

# Print the summary of the model
print(obj.summary(new_X_test, y=new_y_test, show_progress=False))
$R_squared
[1] 0.6051442

$R_squared_adj
[1] 1.394856

$Residuals
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-4.6214 -2.5055 -1.5003 -0.8308  1.2738  3.2794 

$Coverage_rate
[1] 100

$citests
         estimate        lower       upper      p-value signif
cyl   -30.0502823  -48.4171958  -11.683369 8.442658e-03     **
disp   -0.2958477   -0.4386085   -0.153087 3.121989e-03     **
hp     -1.6053302   -1.6789750   -1.531685 3.424156e-08    ***
drat  153.7968829  131.5239191  176.069847 1.041460e-05    ***
wt   -155.1954135 -174.4144275 -135.976399 4.804729e-06    ***
qsec   49.8967685   26.9993778   72.794159 2.504905e-03     **
vs     87.4170764   32.4599776  142.374175 9.457226e-03     **
am    214.5918910  119.8712855  309.312496 2.108825e-03     **
gear   83.1355825   65.3159018  100.955263 7.110354e-05    ***
carb  -77.1384645  -88.2087477  -66.068181 9.958425e-06    ***

$effects
── Data Summary ────────────────────────
                           Values 
Name                       effects
Number of rows             6      
Number of columns          10     
_______________________           
Column type frequency:            
  numeric                  10     
________________________          
Group variables            None   

── Variable type: numeric ──────────────────────────────────────────────────────
   skim_variable     mean      sd       p0      p25      p50      p75      p100
 1 cyl            -30.1   17.5     -42.5    -42.5    -39.9    -17.7     -4.35  
 2 disp            -0.296  0.136    -0.377   -0.377   -0.343   -0.308   -0.0269
 3 hp              -1.61   0.0702   -1.70    -1.66    -1.57    -1.57    -1.53  
 4 drat           154.    21.2     137.     137.     144.     169.     185.    
 5 wt            -155.    18.3    -182.    -160.    -154.    -154.    -125.    
 6 qsec            49.9   21.8      18.8     33.3     60.6     66.6     66.6   
 7 vs              87.4   52.4      46.7     46.7     73.7    105.     178.    
 8 am             215.    90.3      65.6    169.     266.     275.     275.    
 9 gear            83.1   17.0      70.0     70.0     75.5     94.1    109.    
10 carb           -77.1   10.5     -92.5    -79.9    -76.6    -76.6    -59.7   
   hist 
 1 ▇▁▁▁▃
 2 ▇▂▁▁▂
 3 ▅▁▁▇▂
 4 ▇▂▁▁▅
 5 ▂▂▇▁▂
 6 ▅▁▁▂▇
 7 ▇▁▅▁▂
 8 ▂▂▁▁▇
 9 ▇▂▁▂▂
10 ▂▂▇▁▂

Comments powered by Talkyard.